

7

7 Revised 2018

K-12 Standards

Algorithms and

 Programming

 2

License

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. Accordingly, individuals and
organizations are free to share and adapt the materials in whole or in part, as
long as they provide proper attribution, do not use for commercial purposes,
and share contributions or derivations under the same license.

Attribution

The CSTA K–12 Computer Science Standards are created and maintained by
members of the Computer Science Teachers Association (CSTA).

The Association for Computing Machinery (ACM) founded CSTA as part of its
commitment to K–12 computer science education. This work is licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

Suggested citation: Computer Science Teachers Association (2017). CSTA K–12 Computer Science

Standards, Revised 2017. Retrieved from http://www.csteachers.org/standards.

The K–12 Computer Science Framework, led by the Association for

Computing Machinery, Code.org, Computer Science Teachers Association,

Cyber Innovation Center, and National Math and Science Initiative in

partnership with states and districts, informed the development of this

work.

The CSTA Standards Revision Task Force crafted standards by combining concept statements and

practices from the Framework. The Task Force also used descriptive material from the Framework when

writing examples and clarifying statements to accompany the standards. The glossary referenced in the

navigation header links directly to the Framework's glossary.

For more information about the Framework, please visit k12cs.org.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.csteachers.org/
http://www.acm.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://k12cs.org/
http://www.acm.org/
http://www.acm.org/
http://code.org/
http://www.csteachers.org/
https://cyberinnovationcenter.org/
https://www.nms.org/
http://k12cs.org/
http://k12cs.org/

 3

Legend for Identifiers

Unique Numbering System for the Washington Computer Science K–12 Learning Standards
To help organize and track each individual standard, a unique identifier was developed. An example

appears below:

Level
Framework

Concept
Number

Computer Science

K–12 Learning Standard

Grades
6-8

Algorithms and
Programming

17
Systematically test and refine

programs using a range of test cases.

2 AP 17 Identifier: 2-AP-17

Use the following legend to interpret the unique identifier for each Computer Science K–12 Learning

Standard:

The identifier code corresponds to:

Level – Concept – Number

Identifier Code Key

Le
ve

ls

1A Grades K–2

1B Grades 3–5

2 Grades 6–8

3A Grades 9–10

3B Grades 11–12

C
o

n
ce

p
ts

CS Computing Systems

NI Networks and the Internet

DA Data and Analysis

AP Algorithms and Programming

IC Impacts of Computing

Integrated into classroom activities through practices:

P
ra

ct
ic

es

1 Fostering an Inclusive Computing Culture

2 Collaborating

3 Recognizing and Defining Computational Problems

4 Developing and Using Abstractions

5 Creating Computational Artifacts

6 Testing and Refining

7 Communicating about Computing

Figure 1: Standards Identifier Code –
Computer Science Teachers Association K–12 Computer Science Standards (2017)
Retrieved from http://www.csteachers.org

http://www.csteachers.org/

 4

K-12 Algorithms and Programming Standards 1A: K-2

Identifier Level 1A: K–2

1A-AP-08
Model daily processes by creating and following algorithms (sets of step-by-step
instructions) to complete tasks.

1A-AP-09
Model the way programs store and manipulate data by using numbers or other symbols
to represent information.

1A-AP-10
Develop programs with sequences and simple loops, to express ideas or address a
problem.

1A-AP-11
Decompose (break down) the steps needed to solve a problem into a precise sequence
of instructions.

1A-AP-12
Develop plans that describe a program's sequence of events, goals, and expected
outcomes.

1A-AP-13
Give attribution when using the ideas and creations of others while developing
programs.

1A-AP-14
Debug (identify and fix) errors in an algorithm or program that includes sequences and
simple loops.

1A-AP-15
Using correct terminology, describe steps taken and choices made during the iterative
process of program development.

Identifier Level 1B: 3–5

1B-AP-08
Compare and refine multiple algorithms for the same task and determine which is the
most appropriate.

1B-AP-09
Create programs that use variables to store and modify data. Variables are used to store
and modify data.

1B-AP-10 Create programs that include sequences, events, loops, and conditionals.

1B-AP-11
Decompose (break down) problems into smaller, manageable subproblems to facilitate
the program development process.

1B-AP-12
Modify, remix, or incorporate portions of an existing program into one's own work, to
develop something new or add more advanced features.

1B-AP-13
Use an iterative process to plan the development of a program by including others'
perspectives and considering user preferences.

1B-AP-14
Observe intellectual property rights and give appropriate attribution when creating or
remixing programs.

1B-AP-15
Test and debug (identify and fix errors) a program or algorithm to ensure it runs as
intended.

1B-AP-16
Take on varying roles, with teacher guidance, when collaborating with peers during the
design, implementation, and review stages of program development.

1B-AP-17
Describe choices made during program development using code comments,
presentations, and demonstrations.

 5

Identifier Level 2: 6–8

2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms.

2-AP-11
Create clearly named variables that represent different data types and perform
operations on their values.

2-AP-12
Design and iteratively develop programs that combine control structures, including
nested loops and compound conditionals.

2-AP-13
Decompose problems and subproblems into parts to facilitate the design,
implementation, and review of programs.

2-AP-14 Create procedures with parameters to organize code and make it easier to reuse.

2-AP-15
Seek and incorporate feedback from team members and users to refine a solution that
meets user needs.

2-AP-16
Incorporate existing code, media, and libraries into original programs, and give
attribution.

2-AP-17 Systematically test and refine programs using a range of test cases.

2-AP-18
Distribute tasks and maintain a project timeline when collaboratively developing
computational artifacts.

2-AP-19 Document programs in order to make them easier to follow, test, and debug.

Identifier Level 3A: 9–10

3A-AP-13
Create prototypes that use algorithms to solve computational problems by leveraging
prior student knowledge and personal interests.

3A-AP-14
Use lists to simplify solutions, generalizing computational problems instead of repeatedly
using simple variables.

3A-AP-15
Justify the selection of specific control structures when tradeoffs involve
implementation, readability, and program performance, and explain the benefits and
drawbacks of choices made.

3A-AP-16
Design and iteratively develop computational artifacts for practical intent, personal
expression, or to address a societal issue by using events to initiate instructions.

3A-AP-17
Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

3A-AP-18
Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

3A-AP-19
Systematically design and develop programs for broad audiences by incorporating
feedback from users.

3A-AP-20
Evaluate licenses that limit or restrict use of computational artifacts when using
resources such as libraries.

3A-AP-21 Evaluate and refine computational artifacts to make them more usable and accessible.

3A-AP-22
Design and develop computational artifacts working in team roles using collaborative
tools.

3A-AP-23
Document –design decisions using text, graphics, presentations, and/or demonstrations
in the development of complex programs.

 6

Identifier Level 3B: 11–12

3B-AP-08 Describe how artificial intelligence drives many software and physical systems.

3B-AP-09
Implement an artificial intelligence algorithm to play a game against a human opponent
or solve a problem.

3B-AP-10 Use and adapt classic algorithms to solve computational problems.

3B-AP-11 Evaluate algorithms in terms of their efficiency, correctness, and clarity.

3B-AP-12 Compare and contrast fundamental data structures and their uses.

3B-AP-13 Illustrate the flow of execution of a recursive algorithm.

3B-AP-14
Construct solutions to problems using student-created components, such as procedures,
modules and/or objects.

3B-AP-15
Analyze a large-scale computational problem and identify generalizable patterns that
can be applied to a solution.

3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs.

3B-AP-17 Plan and develop programs for broad audiences using a software lifecycle process.

3B-AP-18 Explain security issues that might lead to compromised computer programs.

3B-AP-19 Develop programs for multiple computing platforms.

3B-AP-20
Use version control systems, integrated development environments (IDEs), and
collaborative tools and practices (code documentation) in a group software project.

3B-AP-21
Develop and use a series of test cases to verify that a program performs according to its
design specifications.

3B-AP-22
Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

3B-AP-23 Evaluate key qualities of a program through a process such as a code review.

3B-AP-24
Compare multiple programming languages and discuss how their features make them
suitable for solving different types of problems.

OSPI provides equal access to all programs and services without discrimination based on sex, race, creed, religion, color,

national origin, age, honorably discharged veteran or military status, sexual orientation, gender expression, gender

identity, disability, or the use of a trained dog guide or service animal by a person with a disability. Questions and

complaints of alleged discrimination should be directed to the Equity and Civil Rights Director at 360-725-6162;

TTY: 360-664-3631; or P.O. Box 47200, Olympia, WA 98504-7200; or equity@k12.wa.us.

Download this material in PDF at http://www.k12.wa.us/CurriculumInstruct/learningstandards.aspx.

Please refer to this document number for quicker service: 16-0075.

Chris Reykdal • State Superintendent

Office of Superintendent of Public Instruction

Old Capitol Building • P.O. Box 47200

Olympia, WA 98504-7200

mailto:equity@k12.wa.us
http://www.k12.wa.us/CurriculumInstruct/learningstandards.aspx

