

GUIDANCE ON TEACHING
COMPUTER SCIENCE IN
WASHINGTON STATE K–12
PUBLIC SCHOOLS

Authorizing legislation: HB 1577, SHB 5088

2020

GUIDANCE ON TEACHING COMPUTER
SCIENCE IN WASHINGTON STATE K–12
PUBLIC SCHOOLS

2020

Kathe Taylor, Ph.D.
Assistant Superintendent
Learning and Teaching

Shannon Thissen
Computer Science Program Supervisor

Prepared by:

Janet Gordon, Ed.D.
10janetgordon@gmail.com | 509-860-5273

mailto:10janetgordon@gmail.com

TABLE OF CONTENTS
Executive Summary .. 1

Introduction to the Guidance Document ... 2

Background ... 2

Washington State Definition of Computer Science ... 3

Similarities and Overlaps between Computer Science and Educational Technology 4

Foundational Knowledge for Computer Science... 5

Washington State Learning Standards for Computer Science .. 6

Varied Instructional Settings to Teach Computer Science...11

Computer Science Integration into Various Content Areas ..12

Next Steps ...12

Support to Implement Computer Science in Your School ...12

School Reporting of Computer Science Courses ...13

Assessment of Computer Science Courses ...14

Computer Science state Course Code Guidance ...15

Computer Science STATE Course Codes ..17

CTE CIP Codes and STATE Course Codes ...18

Course Descriptions ..24

Terms and Definitions ...24

Standards and Practices by Grade Band Guide ...36

Introduction ..36

K–2 Standards & Practices ...39

1. Fostering an Inclusive Computing Culture ...39

2. Collaborating around Computing ...40

3. Recognizing & Defining Computational Problems ...41

4. Developing & Using Abstractions ...42

5. Creating Computational Artifacts ..47

6. Testing and Refining Computational Artifacts ..49

7. Communicating About Computing ..50
Grades 3–5 CS Standards & Practices ...55

1. Fostering an Inclusive Computing Culture ...55

2. Collaborating around Computing ...57

3. Recognizing & Defining Computational Problems ...58

4. Developing & Using Abstractions ...60

5. Creating Computational Artifacts ..62

6. Testing and Refining Computational Artifacts ..64

7. Communicating About Computing ..67

Grades 6–8 Standards & Practices ..72

1. Fostering an Inclusive Computing Culture ...72

2. Collaborating Around Computing...73

3. Recognizing & Defining Computational Problems ...76

4. Developing and Using Abstractions ...77

5. Creating Computational Artifacts ..82

6. Testing and Refining Computational Artifacts ..85

7. Communicating About Computing ..88

Grades 9–10 Standards & Practices ...91

1. Fostering an Inclusive Computing Culture ...91

2. Collaborating Around Computing...93

3. Recognizing & Defining Computational Problems ...95

4. Developing and Using Abstractions ...97

5. Creating Computational Artifacts ... 103

6. Testing and Refining Computational Artifacts ... 108

7. Communicating About Computing ... 111

Appendices ... 116

Appendix A. Computer Science State Advisory Committee .. 116

Appendix B. Frequently Asked Questions—Superintendent. .. 117

Appendix C. Frequently Asked Questions—High School Principal. .. 119

Appendix D. Frequently Asked Questions—K–8 Principal. .. 121

Appendix E. Methodology used in the development of this document. 123

Legal Notice ... 124

| 1

EXECUTIVE SUMMARY
“The rise of Google, the rise of Facebook, the rise of Apple I think are proof that there is a place for
computer science as something that solves problems that people face every day.”1 One of the most
exciting and important aspects of this state initiative in computer science (CS) is that all students
will have the opportunity to gain tangible benefits from engaging in computer science and
solution-based practices. Recent legislation in Washington State requires that all high schools offer
CS courses, which should begin with foundational experiences in kindergarten. Elementary and
middle schools are the ideal places to ensure that every student has access to high quality
foundational CS instruction.

To assist in the implementation of this requirement, OSPI assembled subject matter experts from
higher education, Career and Technical Education, K–12, business, and other knowledgeable state
representatives to create a definition of computer science specifically for the K–12 environment.
The definition was then piloted in several schools. The refined definition presented in this
document, is grounded in state and national standards and provides clarity around the question,
“What does computer science look like in my classroom?”

Schools are encouraged to leverage their existing strengths to provide integrated and stand-alone
CS courses in varied instructional settings to attract students from widely diverse backgrounds. State
and national organizations offer approaches that are attractive to many students’ interests, such as
using CS to help their community or promote social justice around a particular need. Additionally,
adaptive technologies can increase access to CS for students with disabilities and those served by a
Section 504 plan. These solutions help students to achieve greater independence and productivity
as well as expanded opportunities for positive social inclusion.

Under the legislation, high schools are required to report specific data, including the state course
code, CIP code, and demographics of students enrolled in the courses. This comprehensive guide
offers three documents to assist schools in implementing CS courses and reporting accurate data:
(1) Computer Science Course Code Guidance; (2) Computer Science Course Descriptions; and (3)
Computer Science Standards and Practices by Grade Band. Please continue to visit the OSPI website
to keep up to date on information about the state initiative in computer science.

1 Eric Schmidt, former Chief Executive Officer of Google

| 2

INTRODUCTION TO THE GUIDANCE
DOCUMENT
The Office of Superintendent of Public Instruction (OSPI) offers this guidance to support schools to
equitably teach computer science (CS) in Washington’s K–12 public schools. This will assist districts
to deeply understand and gain clarification on the new definition of computer science adopted by
OSPI. OSPI is dedicated to providing a realistic and relevant definition of CS to guide school
districts in determining the extent to which CS is being taught and guide districts’ next steps. This
definition will: (1) allow school districts the flexibility needed to accommodate their unique
circumstances, (2) promote culturally responsive computing, (3) encourage the use of CS as a
conduit to teach other content areas such as math and science, and (4) provide room for CS to
evolve and include new technologies that have yet to be discovered.

BACKGROUND
In 2015, the Washington State Legislature directed the Superintendent of Public Instruction to
adopt nationally recognized K–12 computer science standards (SHB 1813). The Computer Science
K–12 Learning Standards Advisory Committee guided the selection and implementation of the
K12CS.org framework and standards from the Computer Science Teachers Association (CSTA).
OSPI’s process of adoption included a comprehensive bias and sensitivity review by the Equity and
Civil Rights Office before the statewide implementation of the new framework and standards.

The framework has provided educators with a scope and sequential progression for students to
learn the academic content in the standards. However, districts’ decision to teach computer science
(CS) has been voluntary until the 2019 legislative session that required all high schools in
Washington state to provide equitable access to CS and teach at least one CS course. Districts must
also follow a structured method of reporting on students enrolled in the course, and guidance
documents are attached.2

Working closely with a Computer Science Advisory Committee (Appendix A) assembled in 2019–20,
Washington state developed a definition of CS to offer to districts that provide clarity around what
qualifies as CS and what does not qualify as CS. Acknowledging that the spirit of the legislation is
for all students to successfully engage with technology in both their personal and career life, the
committee offered their expertise for districts to develop a healthy computer science “ecosystem”
that offers access points to traditionally underserved and diverse students. This document offers
the CS definition, guidance, and other informational resources for districts to comply with
legislation and further support CS initiatives in every district across the state. Additionally,
throughout this document, call-out boxes labeled “K–8 Focus” provide information to assist with
elementary and middle school planning of CS instruction. There is also a Frequently Asked
Questions section in the appendix for K–8 Principals. Lastly, the language used in this document is
intentionally written to be accessible to a broad audience from novice to expert to meet the needs
of districts across the state with a wide range of experience in CS instruction.

2 HB 1577 SHB 5088

| 3

WASHINGTON STATE DEFINITION OF
COMPUTER SCIENCE
The state definition of computer science includes, but is not limited to, the following ideas:

• The design of both computer equipment and digital systems, and the interface between the
hardware and software required for these systems.

• How algorithms, data structures, and modules are used to implement computer software
and hardware.

• Problem-solving skills for designing computer software and hardware such as pattern
recognition, decomposition, debugging, and software troubleshooting.

• How hardware and software are used to implement computers, networks, and other digital
systems.

• The use of computer programs to collect, analyze, store, transform, model, and visualize
data.

• How networking devices enable communication and organization and increase the need for
cybersecurity.

• Using computers to collect, analyze, transform and store data to create visualizations,
models, and inferences.

• How the privacy and security of data can be protected with computers.

• How computers affect people and society.

| 4

Similarities and Overlaps
between Computer Science
and Educational Technology
There are similarities and overlaps between the
definition of computer science and educational
technology. Educational technology consists of
educational technology literacy and its next level of
skill development, technological fluency. In contrast,
computer science is focused on the creation of
computing hardware and software and its impact on
society. Note that computer science does not include
computer literacy education, which focuses on the
use of existing technologies (e.g., word processing).

Educational technology literacy is the ability to:

• Responsibly, creatively, and effectively use
appropriate technology to communicate.

• Access, collect, manage, integrate and evaluate information.

• Solve problems and create solutions.

• Build and share knowledge.

• Improve and enhance learning in all subject areas and experience.

Educational technology fluency is demonstrated when students:

• Apply technology to real-world experiences.

• Adapt to changing technologies.

• Modify current and create new technologies.

• Personalize technology to meet personal needs, interests, and learning styles3.

3 Office of Superintendent of Public Instruction (2018). K−12 Educational Technology Learning Standards,

98 pp.

K−8 FOCUS—The definition
above refers to computer science
instruction at all grade levels. For
more specific application of this
definition to the K−8 setting, see
Washington State Computer
Science Standards and Practices,
which details grade band
appropriate learning and
practices that can be applied in
the classroom.

| 5

FOUNDATIONAL
KNOWLEDGE FOR
COMPUTER SCIENCE
Computer science instruction needs to start in
the early grades. Similar to all content areas,
students need to acquire foundational
computer science knowledge in elementary
school to prepare them for success in the
middle- and high-school computer science courses. This foundational knowledge leads to mastery
of skills and abilities by delivering content that is sequential and follows established learning
progressions (CSTA, 2017).

Foundational computer knowledge includes using and maintaining computer technology in safe
and secure ways such as password protection, internet security, and online responsibility. All
students also need to learn the appropriate and responsible use of technology among users called
digital citizenship (ISTE, 2016). The three principles of digital citizenship are 1) respect, 2) educate,
and 3) protect. These principles are essential for students to practice in school and beyond to
remain safe in the digital world.

In elementary school, students begin to develop computational thinking skills by being guided to
think through the processes to formulate problems and design solutions. Computational thinking
skills help design a solution that can be executed by computers. Computational thinking skills are
essential for proficiency in the CS standards as students learn increasingly complex content in
middle and high school.

Foundational knowledge of how to collect, analyze, transform, present, store, and distribute data
are all key bridges to the Common Core and Next Generation Science Standards (NGSS)
throughout K–12. Creating simple computational artifacts such as an image, graphic, or audio
recording prepares students to develop later more complex artifacts such as a video, web page, or
program code (applications, games, etc.). Similarly, using a computer program to manipulate data,
such as spreadsheets, also sets the stage for learning scripting languages or other programming
languages.

An awareness of human-computer interaction (HCI) is also considered foundational knowledge.
This awareness leads to an understanding of how culture and diversity affect the design of user
interfaces and user experiences. Critical thinking about HCI enables students to design solutions
and code interfaces while considering factors such as cultural relevance and accessibility.

Boosting foundational knowledge and providing encouragement beginning in the early grades can
increase young students’ confidence and enjoyment in computing. Gaining computer science
knowledge early on can help dispel stereotypes and barriers related to diverse participation and
engagement in computing and technology.

K−8 FOCUS—Early and consistent
engagement in CS foundational
practices across K−8 can boost
confidence and enjoyment and
prepare students to succeed in
high school and beyond.

| 6

Washington State Learning Standards for Computer
Science
The Washington State definition of computer science is aligned to the Washington State Learning
Standards for CS. The standards are an essential resource and provide examples of vertically
aligned CS practices that build on foundational knowledge in kindergarten and become
increasingly complex as students increase their depth of understanding. An OSPI companion
document called Washington State Computer Science Standards and Practices by Grade Level Band
helps provide clarity by translating the standards into a familiar everyday language free from
technical terms. The document also provides the core concept and core practice for each standard
as well as samples of student performance.

Five overarching core concepts represent the major content areas in the field of CS. The core
concepts are the knowledge areas associated with computer science are:

• Computing Systems

• Networks and the Internet

• Data and Analytics

• Algorithms and Programming

• Impacts of Computing

Seven core practices describe the behaviors and ways of thinking that students use when working
within the core concepts. They are:

• Fostering an inclusive computing
culture

• Collaborating around computing

• Recognizing and defining
computational problems

• Developing and using abstractions

• Creating computational artifacts

• Testing and refining computational
artifacts

• Communicating about computing

| 7

Each CS learning standard consists of a core concept (what students
need to do) and a core practice (how students need to do it). For
middle and high school CS courses, examining the CS learning
standards and aligning them to classroom instruction will guide
districts through a process to choose an accurate Classification of
Instructional Programs (CIP) code. Choosing the correct CIP code and
state course code is critical to support accurate reporting and
tracking of student enrollment.

K–8 FOCUS—Currently, K–6 grade levels may have a general state
course code assigned to a grade level without delineating specific CS
courses. However, elementary schools should try to identify any CS
instruction and practice that can integrate into core classes. Middle
Schools (grades 7–8) may also wish to more specifically define CS
instruction integrated into core classes and select state course codes
that better align with the course descriptions at the end of this
document.

Figure 1: Five core concepts and seven core practices describe what students should know and
do in CS.

K−8 FOCUS—Currently, K−6
grade levels may have a
general state course code
assigned to a grade level
without delineating specific
CS courses. However,
elementary schools should
try to identify any CS
instruction and practice that
can integrated into core
classes.

| 8

This intersection provides a definition of CS that can be used and applied within K–12 education4 to
teach and assess content (Figure).

Many school districts are already teaching CS to a certain extent. Schools may already embed some
aspects of foundational computer science content across multiple areas and courses. Examples of these
areas and courses may include CTE technology courses, educational technology, digital citizenship,
internet safety, and digital literacy. Computer science instruction does not need to occur in a stand-
alone class with separate content, especially at the elementary level. Instead, computer science
instruction may be a part of inter-related instruction taught within and across the examples of areas
and courses.

4 K−12 Computer Science Framework. (2016). Retrieved from https://www.k12.cs.org

Figure 2: Key practices expressed within concepts lead to students doing computer
science.

https://www.k12.cs.org/

| 9

Equity in Computer Science Education
OSPI aims to equitably expand computer science education and broaden participation in computing
across Washington State. To achieve this goal, we must first capture data that can be examined with a
demographic breakdown including ethnicity, socioeconomic background, gender, etc. and evaluate (1)
student access, (2) student participation, and (3) student outcomes and success with respect to CS
education. CS must be offered equitably by deliberately engaging traditionally underrepresented
students, including Latinx, African American, American Indian/Alaska Native, Pacific Islander, English
Learners, girls, and students with disabilities. The ability to access a computer science course at a school
is equity in its purest form. Some schools do not offer such a course yet; however, recent legislation
requires that all high schools must offer a computer science course5.

Washington has experienced growth in the diversity of our student populations and is a source of
strength in our classrooms. CS can be relevant and attractive to diverse students through culturally
responsive course content that considers all students’ interests, experiences, and needs. Best practices
for culturally responsive teaching include:

• Modify curriculum to be relevant to the lived experiences of the student.

• Use student strengths as a starting point and build on prior knowledge.

• Invest in and take personal responsibility for students’ success.

• Create and nurture cooperative and collaborative environments.

• Encourage relationships among schools and communities.

• Promote critical literacy and thinking.

• Make explicit the power dynamics of mainstream society.

• Share power in the classroom.

• Engage students in social justice work 6.

5 SHB 1577 SB 5088

6 Culturally Responsive Teaching, Region 10 Equity Assistance Center, 2009.

| 10

Districts are encouraged to offer meaningful computing. Students who are engaged in real-life issues
(i.e., environment, animal welfare, health, and nutrition) in the context of their own communities are
more motivated and persistent in CS education. National organizations such as CSforAll, Girls that Code,
National Center for Women in Technology (NCWIT), Black Boys Code, Black Girls Code, etc. all offer
resources to help a district adapt and add course content that motivates and engages traditionally
underserved students.

Bias and cultural sensitivity is a critical consideration when selecting, adapting, or modifying the CS
curriculum and learning resources. OSPI’s Equity and Civil Rights Office has established guidelines to
assist in the review of bias in learning resources (Table 1).

Table 1. OSPI Equity and Civil Rights Office guidelines for a review of bias in learning resources7.
A Bias Review Should Consider the Following Elements

Gender Race Ethnicity
Sexual Orientation Religion Socio-Economic Status

Gender Expression & Identity Physical Disability Age
Family Structure Native Language Occupation
Body Shape/Size Culture Geographic Setting

Equitable access to CS can improve for students with learning and attention disabilities. Educators can
use a variety of tools and strategies to ensure that learners of all abilities are successful. These strategies
can, when incorporated into the classroom, including pedagogical strategies and assistive and adaptive
technologies that can enhance the educational experience of students with disabilities and those served
by a Section 504 plan. These solutions help students to achieve greater independence and productivity
as well as expanded opportunities for positive social inclusion.

7 Retrieved from https://www.k12.wa.us/policy-funding/equity-and-civil-rights/reviewing-instructional-materials-
bias

https://www.k12.wa.us/policy-funding/equity-and-civil-rights/reviewing-instructional-materials-bias
https://www.k12.wa.us/policy-funding/equity-and-civil-rights/reviewing-instructional-materials-bias

| 11

VARIED INSTRUCTIONAL SETTINGS TO TEACH
COMPUTER SCIENCE
There is a wide range of ways that CS can be offered in the K–12 environment to increase accessibility
to traditionally underserved students. In middle and high school, CS can be offered as a unique course
or may be taught in coordination with other areas of the curriculum, such as math, science, technology,
and business. In the early grades, foundational skills may be offered through a variety of expanded
learning opportunities (ELOs), including during the school day, in after-school programs, and inter-
session programs. ELOs provide educational supports as well as enrichment across a wide range of
social contexts that maybe school- or community-based.

As always, achieving equitable access to CS is the goal,
and districts can help by mitigating barriers and
providing the support needed for all students to
participate. This requires districts to engage in
deliberate strategies to increase the participation of
underserved students, including girls, diverse
ethnicities, low-income students, and students with
disabilities, as well as involve family members.

Schools are encouraged to leverage existing strengths
and build on CS instruction that is already in place and
set equity-based strategic goals to expand access to CS
instruction to meet the state requirements. Schools may
be positioned to expand current CS opportunities
through a redistribution of resources in a manner that
maximizes student access and meets the needs of all students. In many cases, this expansion can be
accomplished by embedding CS as a conduit to teach other subjects within various academic
disciplines. For example, a science class may include the use of instrumentation to collect data for lab
experiments where the instrumentation may require programming. Large amounts of raw data may be
generated that require manipulation and analysis to convert into usable information.

Additional ideas are located in the Next Generation Science Standards, where practices such as
computational thinking are described within the standards8. CS courses may be offered as stand-alone
elective credit or may be available for dual credit with instruction in other academic areas. The
instructional settings to teach computer science can be varied; however, the content must be linked to
standards and be mastery-based, with an assessment of learning.

8 https://www.nextgenscience.org/search/node/computational_thinking

K−8 FOCUS—The goal to
increase equity in CS instruction
in high schools is supported by
comprehensive CS instruction.
Elementary and Middle Schools
are the ideal places to ensure
that every student has access to
high quality foundational CS
instruction.

https://www.nextgenscience.org/search/node/computational_thinking

| 12

COMPUTER SCIENCE INTEGRATION INTO
VARIOUS CONTENT AREAS
CS integration is possible throughout K–12. For example, when students develop a simple programming
game to practice math skills, they are learning both math and CS. When middle school biology students
develop an algorithm to summarize data in a research project, they are learning about biology as well
as the computational tools to analyze the data. These types of multi-discipline approaches to CS
instruction can be essential components in the school’s CS curriculum.

A primary goal for schools is to offer multiple ways to attract students from a wide variety of cultural
backgrounds so they can see that pursuing technology education and careers is within reach. For
example, broadening participation to girls, and diverse students requires expanded learning
opportunities that are relevant to them, such as using CS to help their community or promote social
justice around a particular need (e.g., CSforgood.org). Also, CS can be scheduled in co-curricular
settings such as Robotics Clubs and After School Projects. Schools can encourage students’
participation in competitions and exhibitions, a requirement in CTE courses.

NEXT STEPS
Support to Implement Computer Science in
Your School
OSPI, in partnership with the Education Service Districts (ESDs), offers assistance to schools for strategic
planning to build and implement a cohesive, robust CS program. There are many approaches to
strategic planning, one of which is the Strategic CSforALL Resource and Implementation Planning Tool
(SCRIPT). SCRIPT is a framework and systematic process that engages school staff, community, and
stakeholders in collaborative activities to identify the components needed to implement a CS program
successfully. Through the SCRIPT process, the school is guided through five focused areas: (1) materials
and curriculum selection and content refinement, (2) leadership, (3) teacher capacity and development,
(4) partners, and (5) community.

In a reiterative cycle, participants in SCRIPT training identify where they are as a school district (novice,
emerging, developing, highly developed) in the focused areas. In the first focused area,
materials/curriculum selection and content refinement, participants discuss elements of high-quality
computer science curriculum including inclusivity, multidisciplinary, scaffolded, and sequential with
teacher supports such as formative/summative assessments.

SCRIPT trainers will facilitate discussions around the critical leadership needed to implement a CS
program successfully. Success relies on leaders who can cast the vision, set goals, and plan how to carry
the program out. Successful leaders can motivate others across the district to share the responsibility to
reach their goals. School personnel such as librarians, special educators, and guidance counselors all
bring different perspectives and can help reach out to parents and promote community engagement in
the vision.

| 13

Teacher capacity building and professional development is a significant determinant of successfully
reaching district goals to deliver effective CS instruction. The SCRIPT process guides participants to
incorporate teacher professional development into their school plan as well as local, state, and national
partners that can help to bring high-quality CS courses and provide professional development to
teachers. Lastly, SCRIPT training raises awareness of how the community plays an integral part in the
development and sustainability of a CS program. This awareness can lead to improved school-to-family
communication about partner opportunities, extracurricular activities, and in-school CS pathways. The
community can also help inform the CS plan and pathways based not only for college but also for
career readiness based on the local workforce needs.

SCHOOL REPORTING OF COMPUTER
SCIENCE COURSES
As all schools begin to offer K–12 CS classes, OSPI is committed to building an understanding of the
support that districts will need to offer CS classes successfully. This deeper understanding is dependent
upon the accuracy of the information that school districts report. Schools must report CS courses
offered, students enrolled, and staff instructors. The student-record system must include state course
codes for CS and enrollment demographics. Teacher certification reports must include demographics
regarding instructors for CS courses.

To increase reporting data accuracy, OSPI has developed documentation that offers CS course code
guidance. This documentation can be found below in the next section. This resource aligns the core
concepts and practices to CS course names, descriptions, and Classification of Instructional Programs
(CIP) codes. This will assist districts in aligning course content to a course name, CIP code, and the
number of credits. Choosing the correct CIP code is critical to support accurate reporting and tracking
of enrollment demographics. The course data will be analyzed across the state to more deeply
understand the support schools need to implement CS at the K–12 level.

| 14

ASSESSMENT OF COMPUTER SCIENCE COURSES
OSPI requires that a substantial percent of the
Washington State Computer Science Learning standards
are taught and assessed in each credit-bearing CS
course. The CS standards may be taught through the
integration of other content such as math, science, or
ELA. OSPI is currently working on developing the rules
for oversight of the assessments that award CS credit. In
addition, high schools must offer competency testing
that demonstrates mastery of CS standards. CS
competency exams must be able to award CS credit for
skills acquired through vocational courses and work
experience.

K−8 FOCUS—Assessment of CS
at the K−8 level is conducted
through locally developed
classroom assessments. These
assessments are used by
instructional staff to determine
student mastery of learning
targets.

| 15

COMPUTER SCIENCE STATE COURSE CODE
GUIDANCE
During the 2019–20 Legislative session, SHB 1577 concerning K–12 computer science education data
was passed into law. Beginning June 30, 2020, and by June 30 annually after that, school districts must
submit to the Office of the Superintendent of Public Instruction (OSPI), and the OSPI must post
conspicuously on its website, a report for the preceding academic year that must include the following
data:

• Total number of computer science courses offered in each school and whether these courses are
advanced placement classes.

• Number and percentage of students who enrolled in a computer science program.
• Disaggregated by gender, race and ethnicity, special education status, English learner status,

eligibility for the free and reduced-price lunch program, and grade level.
• Number of computer science instructors at each school, disaggregated by certification, if

applicable, gender, and highest academic degree.

Data collection will be done through the Comprehensive Education Data and Research System
(CEDARS), a longitudinal data system managed by the Office of the Superintendent of Public Instruction
(OSPI) to collect, store, and report data related to students, courses, and teachers. The data collected is
either mandated by state or federal law or approved by the Data Governance Group at the OSPI.

CEDARS contains a course catalog of all courses in each grade offered at each public school. Student-
related information in CEDARS includes each student’s gender, grade level, demographics, eligibility for
specific education programs, and a record of all courses attempted by the student. For students in
grades 9 through 12, final grades and credit information for each course attempted and earned by the
student are also stored in CEDARS. There is also information in CEDARS about the staff member
teaching each course or assigned to a homeroom, including each staff member’s gender, academic
degrees, and certification.

State Course Codes are reported within the Comprehensive Education Data and Research System
(CEDARS) and were developed using the National Center for Educational Statistics (NCES) course codes.
Reporting State Course Codes are required for all courses reported to CEDARS. Local education
agencies (LEAs) determine the state course code most appropriate for each class offered. Course
information is amended with data populated from CEDARS.

Data to fulfill the legislation will be directly retrieved from CEDARS. For the data to be accurate, school
districts must code their Computer Science courses with the correct state course code. The following list
is the courses that will count as Computer Science courses in fulfilling the legislative intent of SHB5088
requiring all comprehensive high schools to offer a Computer Science course by the 2022–23 school
year.

| 16

Table 1 of this document lists the state course codes that will meet the legislative requirement.

Table 2 contains the CTE CIP codes and recommended state course codes. If you are offering any
courses using the following CIP codes, please review the State Course Code and Course Name in the
table. Based on your framework submitted under that CIP code, please use the appropriate State
Course Code according to the Course Name in the table. If done correctly, this will allow OSPI to report
the requested data in above mentioned SHB 1577. So, if you are using any of the CIP codes listed and
have an appropriate State Course code from this table, your district will meet the criteria of the
legislation.

Table 3 contains the Course Descriptions to help determine where the course you are teaching the best
fits.

| 17

COMPUTER SCIENCE STATE COURSE CODES
* New State Course Codes Starting 2021–22

Table 2: Computer Science State Course Codes

State
Course
Code

Course Name

10011 Computer Science Principles

10012 Exploring Computer Science

10013 PLTW Computer Science Essentials*

10014 PLTW Computer Science A*

10015 PLTW Computer Science Principles*

10016 PLTW Cybersecurity*

10019 AP Computer Science Principles

10020 Cybersecurity*

10052 Database Management and Data
Warehousing

10053 Database Applications

10054 Data Systems/Processing

10097 Management Information Systems—
Independent Study

10098 Management Information Systems—
Workplace Experience

10099 Information Technology-Other*

10101 Network Technology

10102 Networking Systems

10108 Network Security

10109 Essentials of Network Operating Systems

10148 Networking Systems—Workplace Experience

10149 Networking System – other

10152 Computer Programming

10153 Visual Basic (VB) Programming

State
Course
Code

Course Name

10154 C++ Programming

10155 Java Programming

10156 Computer Programming—Other Language

10157 AP Computer Science A

10159 IB Computer Science

10160 Particular Topics in Computer Programming

10197 Computer Programming Independent Study

10198 Computer Programming— Workplace
Experience

10199 Computer Programming — Other

10201 Web Page Design

10203 Interactive Media

10205 Computer Gaming and Design

10206 Mobile Applications

10251 Computer Technology

10253 Information Support and Services

10254 IT Essentials: PC Hardware and Software

10297 Information Support Services Independent
Study

10298 Information Support and Services—
Workplace Experience

10301 Computer Forensics*

| 18

CTE CIP CODES AND STATE COURSE CODES
* New State Course Codes
Starting 2021–22

♦ Not Computer Science
Theses course are information technology courses

Table 3: CTE CIP Codes and State Course Codes

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

110201
Preparatory

V070000
V078000
V141000
V210100
V470110
V521206

10011 Computer Science Principles

Computer
Programming

Brainbench

A course that focuses on the general writing and
implementation of generic and customized
programs to drive operating systems and that
generally prepares individuals to apply the
methods and procedures of software design and
programming to software installation and
maintenance. Includes instruction in software
design, low- and high-level languages and
program writing; program customization and
linking; prototype testing; troubleshooting; and
related aspects of operating systems and networks.

10014 *PLTW Computer Science A

10015 *PLTW Computer Science Principles

10019 AP Computer Science Principles

10152 Computer Programming

10153 Visual Basic (VB) Programming

10154 C++ Programming

10155 Java Programming

10156 Computer Programming—Other
Language

10157 AP Computer Science A

10159 IB Computer Science

10197 Computer Programming—
Independent Study

10199 Computer Programming— Other

| 19

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

110204
Preparatory

V070000
V078000
V141000
V210100
V470110
V521206

10205 Computer Gaming and Design
Computer

Game
Programming

A program that prepares individuals to apply the
knowledge and skills of design and computer
programming to the development of computer
games. Includes training in character and story
development, computer programming, computer
graphics, game design, game physics, human-
computer interaction, human-centered design, and
usability.

10253 Information Support and Services

110701
Exploratory

V07000
V07800
V141000
V210100
V521206
V470110

10012 Exploring Computer Science

Introduction to
Computer

Science

A program that focuses on computer theory,
computing problems and solutions, and the design
of computer systems and user interfaces from a
scientific perspective. Includes instruction in the
principles of computational science, computer
development and programming, and applications
to a variety of end-use situations.

10013 *PLTW Computer Science Essentials

10152 Computer Programming

10160 Particular Topics in Computer
Programming

110801
Preparatory

V070000
V078000
V100100
V470110
V521206

10201 Web Page Design
Webpage/

Digital/
Multimedia

and
Information

Design

CIW
Foundations

A course that prepares individuals to apply HTML,
XML, JavaScript, graphic applications, and other
authoring tools to the design, editing, and
publishing (launching) of documents, images,
graphics, sound, and multimedia products on the
World Wide Web. Includes instruction in internet
theory; web page standards and policies; elements
of web page design; user interfaces; vector tools;
special effects; interactive and multimedia
components; search engines; navigation;
morphing; e-commerce tools; and emerging web
technologies.

10203 Interactive Media

11151 ♦Digital Media Technology

11153 ♦Digital Media Design and
Production

| 20

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

110802
Preparatory

V070000
V078000
V470110
V521206

10052 Database Management and Data
Warehousing

Data Modeling
and Database
Administration

MCDBA

A course that prepares individuals to design and
manage the construction of databases and related
software courses and applications, including the
linking of individual data sets to create complex
searchable databases (warehousing) and the use of
analytical search tools (mining). Includes
instruction in database theory, logic, and
semantics; operational and warehouse modeling;
dimensionality; attributes and hierarchies; data
definition; technical architecture; access and
security design; integration; formatting and
extraction; data delivery; index design;
implementation problems; planning and
budgeting; and client and networking issues.

10053 Database Applications

10054 Data Systems/Processing

110803
Preparatory

V070000
V078000
V100100
V470110
V480101
V521206

10202 ♦Computer Graphics

Video Game
Design/Digital

Computer
Animation for
Game Design

Skill Connect
Assessment

A course that focuses on the software, hardware,
and mathematical tools used to represent, display,
and manipulate topologically, two and three-
dimensional objects on a video screen and
prepares individuals to function as computer
graphics/video game development specialists.
Includes instruction in graphics software and
systems; computer programming; digital
multimedia; graphic design, video game design
and development; graphics devices, processors,
and standards; attributes and transformations;
projections; surface identification and rendering;
color theory; algebra; geometry; trigonometry and
introduction to various mathematical concepts
related to interactive computer and computer
graphic-based applications.

10203 Interactive Media

10205 Computer Gaming and Design

10206 Mobile Applications

| 21

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

110901
Preparatory

V070000
V078000
V470110
V470101

10101 Network Technology

Computer
Systems

Networking
and

Telecommunic
ations

Network +

A course that focuses on the design,
implementation, and management of linked
systems of computers, peripherals, and associated
software to maximize efficiency and productivity,
and that prepares individuals to function as
network specialists and managers at various levels.
Includes instruction in operating systems and
applications; systems design and analysis;
networking theory and solutions; types of
networks; network management and control;
network and flow optimization; security;
configuring; and troubleshooting. The second 180
hours of this course should lead to industry
certification such as Cisco Certified Network
Associate (CCNA) certification.

10102 Networking Systems

10108 Network Security

10109 Essentials of Network Operating
Systems

111003
Preparatory

V070000
V078000
V141000
V210100
V470110
V521206

10016 *PLTW Cybersecurity
Computer and

Information
Systems

Security/Auditing
/Information

Assurance

A program that prepares individuals to assess the
security needs of computer and network systems,
recommend safeguard solutions, and manage the
implementation, auditing, and maintenance of
security devices, systems, and procedures. Includes
instruction in computer architecture, programming,
and systems analysis; networking;
telecommunications; cryptography; security system
auditing and design; applicable law and
regulations; risk assessment and policy analysis;
contingency planning; user access issues;
investigation techniques; and troubleshooting.

10020 *Cybersecurity

| 22

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

111004
Preparatory

V100100
V470110
V070000
V078000

10201 Web Page Design Web/
Multimedia

Management
and

Webmaster

CIW
Foundations

A program that prepares individuals to develop
and maintain web servers and the hosted web
pages at one or a group of web sites, and to
function as designated webmasters. Includes
instruction in computer systems and editing;
information resources management; web policy
and procedures; Internet applications of
information systems security; user interfacing and
usability research; and relevant management and
communications skills.

10202 ♦Computer Graphics

10203 Interactive Media

111006
Preparatory

V070000
V078000
V470110
V521206

10251 Computer Technology

Computer
Support

Specialist
A+

A course that prepares individuals to analyze
problems and research solutions; identify, test, and
implement solutions; manage working
relationships with customers; install, configure, and
test new operating and application software and
software upgrades; operate a computer system and
run system applications; and monitor and analyze
system performance. Includes instruction in
troubleshooting; facilitation and customer service;
hardware and software installation, configuration,
and upgrades; and system operations, monitoring,
and maintenance.

10253 Information Support and Services

10254 IT Essentials: PC Hardware and
Software

10301 Computer Forensics

118888
Exploratory

V600096
V600097

10098 Management Information Systems—
Workplace Experience

Computer and
Information
Sciences and

Support
Services

Cooperative
Worksite

Experience

A learning experience in which the student has
completed a Career and Technical Education
sequence in their T&I Pathway education prior to
the co-op experience or concurrently enrolls in a
Career and Technical Education class at school and
works in a related occupation. WAC 392-410-315
outlines regulations for granting credit for
cooperative work-based learning experiences.

10149 Networking Systems—Workplace
Experience

10199 Computer Programming—Workplace
Experience

10248 ♦Media Technology—Workplace
Experience

10998 ♦Information Technology—
Workplace Experience

| 23

CIP Code Teacher Cert
V-Code

State Course
Code Course Name SUBJECT Course Description

151202
Preparatory V470110

10251 Computer Technology Computer
Technology/
Computer
Systems

Technology

A program that prepares individuals to apply basic
engineering principles and technical skills in
support of professionals who use computer
systems. Includes instruction in basic computer
design and architecture, programming, problems
of specific computer applications, component, and
system maintenance, and inspection procedures,
hardware and software problem diagnosis and
repair, and report preparation.

12053 Information Support and Services

| 24

TERMS AND DEFINITIONS
Washington State has adopted the following definitions for clarity and direction of courses and
curriculum.

Computational Thinking: A way of solving problems, designing systems, and understanding human
behavior that draws on concepts fundamental to computer science, a fundamental skill for everyone,
not just computer scientists.

Computing Education: The study of computer science or related activities, includes the act of scripting,
coding, web development, or computer programming. It does not include non-coding uses of computer
technology to create artifacts (i.e., multimedia development, desktop publishing).

Digital Citizenship: Digital citizens recognize and value the rights, responsibilities, and opportunities of
living, learning, and working in an interconnected digital world, and they engage in safe, legal, and
ethical behaviors.

Digital Literacy: An individual’s ability to find, evaluate, and compose clear information through writing
and other media on various digital platforms.

Educational Technology: Washington State’s EdTech Standards define technology literacy and its next
level of skill development, technological fluency, in this way:

Technology Literacy is the ability to responsibly, creatively, and effectively use appropriate
technology to:

o Communicate.

o Access, collect, manage, integrate, and evaluate information.

o Solve problems and create solutions.

o Build and share knowledge.

o Improve and enhance learning in all subject areas and experiences.

Technology Fluency is demonstrated when students:

o Apply technology to real-world experiences.

o Adapt to changing technologies.

o Modify current and create new technologies.

o Personalize technology to meet personal needs, interests, and learning styles.

Keyboarding: The goal of keyboarding is to enable proficient and accurate digital input. By grade 5, it
is recommended that students should be able to key by touch. Key by touch is determined through
proficiency, proper technique with associated keys and fingers, and not speed.

Media Literacy: The ability to access, analyze, evaluate, create, and act using a variety of forms of
communication.

| 25

Course Descriptions

* New State Course Codes Starting 2021–22

Table 4: Course Descriptions

Course
Code Course Name Description Computer Science

Standards

10011 Computer Science
Principles

Computer Science Principles courses provide
students the opportunity use programming,
computational thinking, and data analytics to
create digital artifacts and documents
representing design and analysis in areas
including the Internet, algorithms, and the
impact that these have on science, business,
and society. Computer Science Principles
courses teach students to use computational
tools and techniques including abstraction,
modeling, and simulation to collaborate in
solving problems that connect computation to
their lives.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10012 Exploring
Computer Science

Exploring Computer Science courses present
students with the conceptual underpinnings of
computer science through an exploration of
human computer interaction, web design,
computer programming, data modeling, and
robotics. While these courses include
programming, the focus is on the
computational practices associated with doing
computer science, rather than just a narrow
focus on coding, syntax, or tools. Exploring
Computer Science courses teach students the
computational practices of algorithm design,
problem solving, and programming within a
context that is relevant to their lives.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10013 *PLTW Computer
Science Essentials

Following Project Lead the Way’s suggested
curriculum, PLTW Computer Science Essentials
(formerly known as PLTW Introduction to
Computer Science) courses introduce students
to computational thinking concepts,
fundamentals, and tools. Students will increase
their understanding of programming languages
through the use of visual and text-based
programming. Projects will include the creation
of apps and websites to address real-life topics
and problems.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

| 26

Course
Code Course Name Description Computer Science

Standards

10014 *PLTW Computer
Science A

Following Project Lead the Way’s suggested
curriculum to prepare students for the College
Board’s Advanced Placement Computer Science
A exam, PLTW Computer Science A (formerly
known as PLTW Computer Science
Applications) courses focus on extending
students’ computational thinking skills through
the use of various industry-standard
programming and software tools. In these
courses, students collaborate to design and
produce solutions to real-life problems.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10015 *PLTW Computer
Science Principles

Following Project Lead the Way’s suggested
curriculum to prepare students for the College
Board’s Advanced Placement Computer Science
Principles exam, PLTW Computer Science
Principles (formerly known as PLTW Computer
Science and Software Engineering) courses are
designed to help students develop
computational thinking, and introduce students
to possible career paths involving computing.
These courses help students build
programming expertise and familiarity with the
Internet using multiple platforms and
programming languages. Course content may
include application development, visualization
of data, cybersecurity, and simulation.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10016 *PLTW
Cybersecurity

Following Project Lead the Way’s suggested
curriculum, PLTW Cybersecurity courses
introduce students to the tools and concepts of
cybersecurity. In these courses, students are
encouraged to understand vulnerabilities in
computational resources and to create
solutions that allow people to share computing
resources while retaining privacy. These courses
also introduce students to issues related to
ethical computing behavior.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

| 27

Course
Code Course Name Description Computer Science

Standards

10019 AP Computer
Science Principles

Following the College Board’s suggested
curriculum designed to parallel college-level
computer science principles courses, AP
Computer Science Principles courses introduce
students to the fundamental ideas of computer
science and how to apply computational
thinking across multiple disciplines. These
courses teach students to apply creative
designs and innovative solutions when
developing computational artifacts. These
courses cover such topics as abstraction,
communication of information using data,
algorithms, programming, the Internet, and
global impact.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10020 *Cybersecurity

Cybersecurity courses introduce students to the
concepts of cybersecurity. These courses
provide students with the knowledge and skills
to assess cyber risks to computers, networks,
and software programs. Students will learn how
to create solutions to mitigate cybersecurity
risks. These courses may also cover the legal
environment and ethical computing behavior
related to cybersecurity.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

10052
Database
Management and
Data Warehousing

Database Management and Data Warehousing
courses provide students with the skills
necessary to design databases to meet user
needs. Courses typically address how to enter,
retrieve, and manipulate data into useful
information. More advanced topics may cover
implementing interactive applications for
common transactions and the utility of mining
data.

CS includes subjects and
standards in these core
areas:
3. Data & Analysis
4. Algorithms &
Programming
May include these areas:
2. Networks & the Internet

10053 Database
Applications

Database Application courses provide students
with an understanding of database
development, modeling, design, and
normalization. These courses typically cover
such topics as SELECT statements, data
definition, manipulation, control languages,
records, and tables. In these courses, students
may use Oracle WebDB, SQL, PL/SQL, SPSS, and
SAS and may prepare for certification.

CS includes subjects and
standards in these core
areas:
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet

| 28

Course
Code Course Name Description Computer Science

Standards

10054 Data
Systems/Processing

Data Systems/Processing courses introduce
students to the uses and operation of
computer hardware and software and to the
programming languages used in business
applications. Students typically use BASIC,
COBOL, and RPL languages as they write
flowcharts or computer programs and may also
learn data-processing skills.

CS topics include subjects
and standards in these
core areas:
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet

10097

Management
Information
Systems—
Independent Study

Management Information Systems—
Independent Study courses, often conducted
with instructors as mentors, enable students to
explore topics related to management
information systems. Independent Study
courses may serve as an opportunity for
students to expand their expertise in a
particular specialization, to explore a topic in
greater detail, or to develop more advanced
skills.

CS topics include subjects
and standards in these
core areas:
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet

10098

Management
Information
Systems—
Workplace
Experience

Management Information Systems—Workplace
Experience courses provide work experience in
fields related to management information
systems. Goals are typically set cooperatively by
the student, teacher, and employer (although
students are not necessarily paid). These
courses may include classroom activities as
well, involving further study of the field or
discussion regarding experiences that students
encounter in the workplace.

CS topics include subjects
and standards in these
core areas:
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet

10101 Network
Technology

Network Technology courses address the
technology involved in the transmission of data
between and among computers through data
lines, telephone lines, or other transmission
media, such as hard wiring, wireless, cable
networks, and so on. These courses may
emphasize the capabilities of networks,
network technology itself, or both. Students
typically learn about network capabilities and
network technology, including the software,
hardware, and peripherals involved in setting
up and maintaining a computer network.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

| 29

Course
Code Course Name Description Computer Science

Standards

10102 Networking
Systems

Networking Systems courses are designed to
provide students with the opportunity to
understand and work with hubs, switches, and
routers. Students develop an understanding of
LAN (local area network), WAN (wide area
network), wireless connectivity, and Internet-
based communications (including cloud-based
computing), with a strong emphasis on network
function, design, and installation practices.
Students acquire skills in the design,
installation, maintenance, and management of
network systems that may help them obtain
network certification.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

10108 Network Security

Network Security courses provide students with
an understanding of network security principles
and implementation. Course topics usually
include authentication, the types of attacks and
malicious code that may be used against
computer networks, the threats and
countermeasures for e-mail, Web applications,
remote access, and file and print services. These
courses may also cover a variety of security
topologies as well as technologies and
concepts used for providing secure
communication channels, secure
internetworking devices, intrusion detection
systems, and firewalls.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet

10109
Essentials of
Network Operating
Systems

Essentials of Network Operating Systems
courses provide students with an overview of
multi-user, multi-tasking network operating
systems. In these courses, students study the
characteristics of operating systems, such as
Linux, and various Windows network operating
systems and explore a range of topics including
installation procedures, security issues, back-up
procedures, and remote access. Advanced
topics may include network administration,
including account management, training,
evaluating new technology, developing system
policies, troubleshooting, email and business
communications and Web site management.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet

| 30

Course
Code Course Name Description Computer Science

Standards

10148

Networking
Systems—
Workplace
Experience

Networking Systems—Workplace Experience
courses provide students with work experience
in fields related to networking systems. Goals
are typically set cooperatively by the student,
teacher, and employer (although students are
not necessarily paid). These courses may
include classroom activities as well, involving
further study of the field or discussion
regarding experiences that students encounter
in the workplace.

CS topics include subjects
and standards in these
core areas:
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

10149 Networking System
– other Other Networking Systems courses.

10152 Computer
Programming

Computer Programming courses provide
students with the knowledge and skills
necessary to construct computer programs in
one or more languages. Computer coding and
program structure are often introduced with
the BASIC language, but other computer
languages, such as Visual Basic (VB), Java,
Pascal, C++, and C#, may be used instead.
Students learn to structure, create, document,
and debug computer programs. Advanced
courses may include instruction in object-
oriented programming to help students
develop applications for Windows, database,
multimedia, games, mobile and Web
environments. An emphasis is placed on
design, style, clarity, and efficiency. In these
courses, students apply the skills they learn to
relevant authentic applications.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10153 Visual Basic (VB)
Programming

Visual Basic (VB) Programming courses provide
an opportunity for students to gain expertise in
computer programs using the Visual Basic (VB)
language. As with more general computer
programming courses, the emphasis is on how
to structure and document computer programs
and how to use problem-solving techniques.
These courses cover such topics as the use of
text boxes, scroll bars, menus, buttons, and
Windows applications. More advanced topics
may include mathematical and business
functions and graphics.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

| 31

Course
Code Course Name Description Computer Science

Standards

10154 C++ Programming

C++ Programming courses provide an
opportunity for students to gain expertise in
computer programs using the C++ language.
As with more general computer programming
courses, the emphasis is on how to write
logically structured programs, include
appropriate documentation, and use problem-
solving techniques. More advanced topics may
include multi-dimensional arrays, functions,
sorting, loops, and records.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10155 Java Programming

Java Programming courses provide students
with the opportunity to gain expertise in
computer programs using the Java language.
As with more general computer programming
courses, the emphasis is on how to structure
and document computer programs, using
problem-solving techniques. Topics covered in
the course include syntax, I/O classes, string
manipulation, and recursion.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10156
Computer
Programming—
Other Language

Computer Programming—Other Language
courses provide students with the opportunity
to gain expertise in computer programs using
languages other than those specified (such as
Pascal, FORTRAN, Python, or emerging
languages). As with other computer
programming courses, the emphasis is on how
to structure and document computer
programs, using problem-solving techniques.
As students advance, they learn how to utilize
best the features and strengths of the language
being used.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10157 AP Computer
Science A

Following the College Board’s suggested
curriculum designed to mirror college-level
computer science courses, AP Computer
Science A courses emphasize object-oriented
programming methodology with a focus on
problem solving and algorithm development.
These courses cover such topics as object-
oriented program design; program
implementation; program analysis; standard
data structures; standard algorithms; and the
ethical and social implications of computing
systems.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

| 32

Course
Code Course Name Description Computer Science

Standards

10159 IB Computer
Science

IB Computer Science courses prepare students
to take the International Baccalaureate
Computer Science exams. The courses
emphasize system fundamentals, computer
organization, and networks, as well as the
fundamental concepts of computational
thinking, the development of practical
computational solutions, and programming. IB
Computer Science courses also cover the
applications and effects of the computer on
modern society as well as the limitations of
computer technology.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10160
Particular Topics in
Computer
Programming

These courses examine particular topics in
computer programming other than those
already described elsewhere in this
classification system.

10197
Computer
Programming—
Independent Study

Computer Programming—Independent Study
courses, often conducted with instructors as
mentors, enable students to explore topics
related to computer programming.
Independent Study courses may serve as an
opportunity for students to expand their
expertise in a particular specialization, to
explore a topic in greater detail, or to develop
more advanced skills.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10198

Computer
Programming—
Workplace
Experience

Computer Programming—Workplace
Experience courses provide students with work
experience in fields related to computer
programming. Goals are typically set
cooperatively by the student, teacher, and
employer (although students are not
necessarily paid). These courses may include
classroom activities as well, involving further
study of the field or discussion regarding
experiences that students encounter in the
workplace.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

| 33

Course
Code Course Name Description Computer Science

Standards

10199
Computer
Programming —
Other

Other Computer Programming courses.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10201 Web Page Design

Web Page Design courses teach students how
to design websites by introducing them to and
refining their knowledge of site planning, page
layout, graphic design, and the use of markup
languages—such as Extensible Hypertext
Markup, JavaScript, Dynamic HTML, Document
Object Model, and Cascading Style Sheets—to
develop and maintain a web page. These
courses may also cover security and privacy
issues, copyright infringement, trademarks, and
other legal issues relating to the use of the
Internet. Advanced topics may include the use
of forms and scripts for database access,
transfer methods, and networking
fundamentals.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

10203 Interactive Media

Interactive Media courses provide students with
the knowledge and skills to create, design, and
produce interactive digital media products and
services. The courses may emphasize the
development of digitally generated and/or
computer-enhanced media. Course topics may
include 3D animation, graphic media, web
development, and virtual reality. Upon
completion of these courses, students may be
prepared for industry certification.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

| 34

Course
Code Course Name Description Computer Science

Standards

10205 Computer Gaming
and Design

Computer Gaming and Design courses prepare
students to design computer games by
studying design, animation, artistic concepts,
digital imaging, coding, scripting, multimedia
production, and game play strategies.
Advanced course topics include, but are not
limited to, level design, environment and 3D
modeling, scene and set design, motion
capture, and texture mapping.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

10206 Mobile
Applications

Mobile Applications courses provide students
with opportunities to create applications for
mobile devices using a variety of commercial
and open source software. These courses
typically address the installation and
modification of these applications, as well as
customer service skills to handle user issues.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
5. Impacts of Computing

10251 Computer
Technology

Computer Technology courses introduce
students to the features, functions, and design
of computer hardware and provide instruction
in the maintenance and repair of computer
components and peripheral devices.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
3. Data & Analysis
4. Algorithms &
Programming

May include these areas:
2. Networks & the Internet
5. Impacts of Computing

10253
Information
Support and
Services

Information Support and Services courses
prepare students to assist users of personal
computers by diagnosing their problems in
using application software packages and
maintaining security requirements.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
4. Algorithms &
Programming

May include these areas:
3. Data & Analysis
5. Impacts of Computing

| 35

Course
Code Course Name Description Computer Science

Standards

10254
IT Essentials: PC
Hardware and
Software

IT Essentials: PC Hardware and Software
courses provide students with in-depth
exposure to computer hardware and operating
systems. Course topics include the functionality
of hardware and software components as well
as suggested best practices in maintenance and
safety issues. Students learn to assemble and
configure a computer, install operating systems
and software, and troubleshoot hardware and
software problems. In addition, these courses
introduce students to networking and often
prepare them for industry certification.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
4. Algorithms &
Programming

May include these areas:
3. Data & Analysis
5. Impacts of Computing

10297

Information
Support and
Services—
Independent Study

Information Support and Services—
Independent Study courses, often conducted
with instructors as mentors, enable students to
explore topics related to computer information
support and services. Independent Study
courses may serve as an opportunity for
students to expand their expertise in a
particular specialization, to explore a topic in
greater detail, or to develop more advanced
skills.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
4. Algorithms &
Programming

May include these areas:
3. Data & Analysis
5. Impacts of Computing

10298

Information
Support and
Services—
Workplace
Experience

Information Support and Services—Workplace
Experience courses provide students with work
experience in fields related to information
support and service. Goals are typically set
cooperatively by the student, teacher, and
employer (although students are not
necessarily paid). These courses may include
classroom activities as well, involving further
study of the field or discussion regarding
experiences that students encounter in the
workplace.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
4. Algorithms &
Programming

May include these areas:
3. Data & Analysis
5. Impacts of Computing

10301 *Computer
Forensics

Computer Forensics courses address the
preservation, identification, extraction,
documentation, and interpretation of computer
data. Topics covered may include legal
concepts, evidence handling and preservation,
file system structures, chain of custody, and
identification and recovery of computer data.
These courses may also cover the need to
perform an investigation and how to collect
evidence and analyze data.

CS topics include subjects
and standards in these
core areas:
1. Computing Systems
2. Networks & the Internet
3. Data & Analysis
4. Algorithms &
Programming
5. Impacts of Computing

| 36

STANDARDS AND PRACTICES BY GRADE BAND
GUIDE
Introduction
Within the Washington State Learning Standards for Computer Science (CS) reside a description of CS
practices that translates the standards into teacher classroom instruction. The practices are vertically
aligned, building on foundational knowledge in kindergarten and becoming increasingly complex as
students increase their depth of understanding. As students move through each grade band, they move
from novice upward realizing improved skills and abilities. This movement upward is called a learning or
practice progression. Computer science practices are listed in the table below.

Table 5: Practice Statements

Practice Practice Statements

1. Fostering and Inclusive
Computing Culture

1.1 Include the unique perspectives of others and reflect on one’s own
perspectives when designing and developing computational products.

1.2 Address the needs of diverse end users during the design process to
produce artifacts with broad accessibility and usability.

1.3 Employ self- and peer-advocacy to address bias in interactions, product
design, and development methods.

2. Collaborating Around
Computing

2.1 Cultivate working relationships with individuals possessing diverse
perspectives, skills, and personalities.

2.2 Create team norms, expectations, and equitable workloads to increase
efficiency and effectiveness.

2.3 Solicit and incorporate feedback from and provide constructive feedback
to team members and other stakeholders.

2.4 Evaluate and select technological tools that can be used to collaborate on
a project.

3. Recognizing and
Defining Computational

Problems

3.1 Identify complex, interdisciplinary, real-world problems that can be
solved computationally.

3.2 Decompose complex real-world problems into manageable subproblems
that could integrate existing solutions or procedures.

3.3 Evaluate whether it is appropriate and feasible to solve a problem
computationally.

4. Developing and Using
Abstractions

4.1 Extract common features from a set of interrelated processes or complex
phenomena.

4.2 Evaluate existing technological functionalities and incorporate them into
new designs.

4.3 Create modules and develop points of interaction that can apply to
multiple situations and reduce complexity.

4.4 Model phenomena and processes and simulate systems to understand
and evaluate potential outcomes.

Practice Practice Statements

| 37

The practices are grounded in the belief that computer science offers unique opportunities to apply to
other subjects. Figure 3 describes the intersection among practices in computer science, science and
engineering, and mathematics. Explicit instruction is required to create the connections illustrated in the
figure.

Teachers across the state assisted in translating the CS standards into a familiar everyday language free
from technical terms. This Description is included in the tables below to provide clarity to teachers and
students. The practice progression illustrates what CS looks like when describing and engaging in
activities in each grade band. Provided in the guidance are samples of student performance and
additional sub-concept information within each grade level band.

5. Creating Computational
Artifacts

5.1 Plan the development of a computational artifact using an iterative
process that includes reflection on and modification of the plan, taking
into account key features, time and resource constraints, and user
expectations.

5.2 Create a computational artifact for practical intent, personal expression,
or to address a societal issue.

5.3 Modify an existing artifact to improve or customize it. Students should be
able to examine existing artifacts to understand what they do.

6. Testing and Refining
Computational Artifacts

6.1 Systematically test computational artifacts by considering all scenarios
and using test cases.

6.2 Identify and fix errors using a systematic process.
6.3 Evaluate and refine a computational artifact multiple times to enhance its

performance, reliability, usability, and accessibility.

7. Communicating About
Computing

7.1 Select, organize and interpret large data sets from multiple sources to
support a claim.

7.2 Describe, justify, and document computational processes and solutions
using appropriate terminology consistent with the intended audience and
purpose.

7.3 Articulate ideas responsibly by observing intellectual property rights and
giving appropriate attribution.

| 38

Figure 3: Relationships between computer science, science and engineering, and math practices

| 39

K–2 STANDARDS & PRACTICES
Purpose: CS education for students in grades K–2 is focused on building a strong foundation of knowledge that supports continued CS
learning, such as proper terminology, safety (passwords, internet), ethical responsibilities, and how computers are used to support and
change our lives. Samples of student performance are provided for teachers and instructional staff to be better equipped to develop CS
activities that align with the state standards.

1. Fostering an Inclusive Computing Culture

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

1

1A-CS-01

Select and operate
appropriate software
to perform a variety
of tasks and
recognize that users
have different needs
and preferences for
the technology they
use.

People use
computing devices to
perform a variety of
tasks accurately and
quickly. Students
should be able to
select the
appropriate
app/program to use
for tasks they need to
complete.

1.1

Students should
begin to differentiate
their technology
preferences from the
technology
preferences of others.

• A student, when asked to draw a
picture, should be able to open
and use a drawing app/program
to complete this task, or if asked
to create a presentation, they
should be able to open and use
presentation software.

• Students may compare different
web browsers, or word
processing, presentation, or
drawing programs.

• Students, with teacher guidance,
should be able to compare and
discuss preferences for software
with the same primary
functionality.

Devices

People use computing
devices to perform a variety
of tasks accurately and
quickly. Computing devices
interpret and follow the
instructions given literally.

| 40

2. Collaborating around Computing

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

2

1A-IC-17

Work respectfully and
responsibly with
others online.

Online
communication
facilitates positive
interactions, such as
sharing ideas with
many people., but the
public and
anonymous nature of
online
communication also
allow intimidating
and inappropriate
behavior in the form
of cyberbullying.

2.1

Students should learn
strategies for working
with team members
who possess varying
individual strengths.
For example, with
teacher support,
students should
begin to give each
team member
opportunities to
contribute and to
work with each other
as co-learners.

• Students need to use their
manners while using technology
and while online. There should be
no bullying, and they should use
friendly language.

• Students in the classroom will
work on their devices, use
appropriate manners, and will not
bully.

• Students will be helpful and
cooperative to other students and
adults and also treat the
equipment with respect.

• Students could share their work
on blogs or in other collaborative
spaces online, taking care to avoid
sharing information that is
inappropriate or that could
personally identify them with
others.

• Students could provide feedback
to others about their work in a
kind and respectful manner.

Social Interactions

Computing has positively and
negatively changed the way
people communicate. People
can have access to
information and each other
instantly, anywhere, and at
any time, but they are at the
risk of cyberbullying and
reduced privacy.

| 41

3. Recognizing & Defining Computational Problems
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

3

1A-AP-11

Decompose (break
down) the steps
needed to solve a
problem into a
precise sequence of
instructions.

Decomposition is the
act of breaking down
tasks into simpler
tasks.

3.2

Students should
focus on breaking
down simple
problems. For
example, in a visual
programming
environment,
students could break
down (or
decompose), the
steps needed to draw
a shape.

• Students could break down (or
decompose) the steps needed to
complete a task.

• Students could break down the
steps needed to make a peanut
butter and jelly sandwich, to brush
their teeth, to draw a shape, to
move a character across the
screen, or to solve a level of a
coding app.

Modularity

Complex tasks can be broken
down into simpler
instructions, some of which
can be broken down even
further. Likewise, instructions
can be combined to
accomplish complex tasks.

| 42

4. Developing & Using Abstractions
Standards Description Practice

Progression
Samples of student

performance
Sub-Concept

Pr
ac

tic
e

4

1A-DA-05

Store, copy, search,
retrieve, modify, and
delete information
using a computing
device and define the
information stored as
data.

All information stored
and processed by a
computing device
referred to as data.
Data can be images,
text documents,
audio files, software
programs or apps,
video files, etc.

4.2

Just as a car hides
operating details,
such as the
mechanics of the
engine, a computer
program’s “move”
command relies on
hidden details that
cause an object to
change location on
the screen.

• Students use software to
complete tasks on a computing
device, and they will be
manipulating data.

Storage

Computers store data that can
be retrieved later. Identical
copies of data can be made
and stored in multiple locations
for a variety of reasons, such as
to protect against loss.

| 43

Standards Description Practice
Progression

Samples of student
performance

Sub-Concept
Pr

ac
tic

e
4

1A-DA-06

Collect and present
the same data in
various visual
formats.

The collection and
use of data about the
world is a routine
part of life and
influences how
people live. The data
collected could then
be organized into
two or more
visualizations, such as
a bar graph, pie
chart, or pictograph.

4.4

Students with
guidance may draw
pictures to describe a
simple pattern, such
as sunrise and sunset,
or show the stages in
a process, such as
brushing your teeth.
They can also create
an animation to
model a
phenomenon, such as
evaporation.

7.1

Students should, with
guidance, present
basic data using
visual
representations, such
as storyboards,
flowcharts, and
graphs.

• Students may draw pictures of
sunrises and sunsets, or show the
stages in a process, such as
brushing your teeth.

• Students may create an animation
to model a phenomenon, such as
evaporation.

• Students could collect data on the
weather, such as sunny days
versus rainy days, the temperature
at the beginning of the school day
and end of the school day, or the
inches of rain throughout a storm.

• Students could count the number
of pieces of each color of candy in
a bag of candy, using Skittles or
M&Ms.

• Students could create surveys of
things that interest them, such as
favorite foods, pets, or TV shows,
and collect answers to their
surveys from their peers and
others.

Collection

Everyday digital devices
collect and display data over
time. The collection and use
of data about individuals and
the world around them is a
routine part of life and
influences how people live.

| 44

Standards Description Practice
Progression

Samples of student
performance

Sub-Concept
Pr

ac
tic

e
4

1A-DA-07

Identify and describe
patterns in data
visualizations, such as
charts or graphs, to
make predictions.

Data can be used to
make inferences or
predictions about the
world.

4.1

Students should be
able to identify and
describe repeated
sequences in data or
code through
analogy to visual
patterns or physical
sequences of objects.

• Students could use a number
chart to figure out what comes
next.

• Students look at a pattern to play
a game.

• Students could analyze a graph or
pie chart of the colors in a bag of
candy or the averages for colors
in multiple bags of candy. Identify
the patterns for which colors are
present, and then predict which
colors will have most and least in
a new bag of candy.

• Students could analyze graphs of
temperatures taken at the
beginning of the school day and
end of the school day, identify the
patterns of when temperatures
rise and fall, and predict if they
think the temperature will rise or
fall at a particular time of the day,
based on the pattern observed.

Visualization &
Transformation

Data can be displayed for
communication in many
ways. People use computers
to transform data into new
forms, such as graphs and
charts.

| 45

Standards Description Practice
Progression

Samples of student
performance

Sub-Concept
Pr

ac
tic

e
4

1A-AP-08

Model daily
processes by creating
and following
algorithms (sets of
step-by-step
instructions) to
complete tasks.

An algorithm is the
combination of
smaller tasks into
more complex tasks.
Students could create
and follow algorithms
for making simple
foods, brushing their
teeth, getting ready
for school,
participating in clean-
up time.

4.4

Students with
guidance can draw
pictures to describe a
simple pattern, such
as sunrise and sunset,
or show the stages in
a process, such as
brushing your teeth.

• Students can make a list of steps
to show how to complete a task
Example: How to line up for lunch

• Students can make a list of steps
to show how to complete a task. It
can be introduced in the first few
weeks of school and practiced
throughout the year.

• Students have multiple routines
that need to be followed; lining
up, getting ready for class,
walking to a meeting place,
packing to go home.

• Students can also create an
animation to model a
phenomenon, such as
evaporation.

Inference & Models

Data can be used to make
inferences or predictions
about the world. Inferences,
statements about something
that cannot be readily
observed, are often based on
observed data. Predictions,
statements about future
events, are based on patterns
in data and can be made by
looking at data visualizations,
such as charts and graphs.

| 46

Standards Description Practice
Progression

Samples of student
performance

Sub-Concept
Pr

ac
tic

e
4

1A-AP-09

Model the way
programs store and
manipulate data by
using numbers or
other symbols to
represent
information.

Information in the
real world can be
represented in
computer programs.

4.4

Students with
guidance can draw
pictures to describe a
simple pattern, such
as sunrise and sunset,
or show the stages in
a process, such as
brushing your teeth.

• Students create steps on a map to
find their treasure, using arrows to
tell which direction to walk and
how many steps to take.

• Students could use thumbs
up/down as representations of
yes/no, use arrows when writing
algorithms to represent direction,
or encode and decode words
using numbers, pictographs, or
other symbols to represent letters
or words.

• Students may also create an
animation to model a
phenomenon, such as
evaporation.

Variables

Information in the real world
can be represented in
computer programs.
Programs store and
manipulate data, such as
numbers, words, colors, and
images. The type of data
determines the actions and
attributes associated with it.

| 47

5. Creating Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

5

1A-AP-10

Develop programs
with sequences and
simple loops, to
express ideas or
address a problem.

Programming is used
as a tool to create
products that reflect
a wide range of
interests. Control
structures specify the
order in which
instructions are
executed within a
program.
Sequences are the
order of instructions
in a program.

5.2

Students should be
able to choose from a
set of given
commands to create
simple animated
stories or solve pre-
existing problems.

• Students pick which steps will
help their robot get to the end of
a puzzle.

• Students decide which comes
first, second, third, and more to
solve a task.

• Students could correctly sequence
a simple animated story. If the
commands to program a robot
are not in the correct order, the
robot will not complete the task
desired.

• Students can use Loops allow for
the repetition of a sequence of
code multiple times. For example,
in a program to show the life
cycle of a butterfly, a loop could
be combined with move
commands to allow continual but
controlled movement of the
character

Control

Computers follow precise
sequences of instructions that
automate tasks. Program
execution can also be non-
sequential by repeating
patterns of instructions and
using events to initiate
instructions.

| 48

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

1A-AP-12

Develop plans that
describe a program’s
sequence of events,
goals, and expected
outcomes.

Creating a plan for
what a program will
do clarifies the steps
that will be needed to
create a program and
can be used to check
if a program is
correct.

5.1

Students, with the
help of teachers,
should participate in
project planning and
the creation of
brainstorming
documents.

7.2

Students should use
language that
articulates what they
are doing and
identifies devices and
concepts they are
using with correct
terminology (e.g.,
program, input, and
debug).

• Students, with the help of their
teacher, create a plan to solve a
simple task. They work on the
steps for making it work. For
example, how to make a peanut
butter and jelly sandwich.

• Students practice using computer
science vocabulary with their
plans.

• Students could create a planning
document, such as a story map, a
storyboard, or a sequential
graphic organizer, to illustrate
what their program will do.

• Students at this stage may
complete the planning process
with help from their teachers.

Program Development

People develop programs
collaboratively and for a
purpose, such as expressing
ideas or addressing problems.

| 49

6. Testing and Refining Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

6

1A-AP-14

Debug (identify and
fix) errors in an
algorithm or program
that includes
sequences and
simple loops.

Algorithms or
programs may not
always work correctly.
Students should be
able to use various
strategies, such as
changing the
sequence of the
steps, following the
algorithm in a step-
by-step manner, or
trial and error to fix
problems in
algorithms and
programs.

6.2

Students could use
trial and error to fix
simple errors. For
example, a student
may try reordering
the sequence of
commands in a
program.

• Students could try reordering the
sequence of commands in a
program.

• Students find and identify
patterns, sequences, and repletion
in a set of commands. They can
then use these patterns to help
find and fix mistakes in their
commands.

• Students practice debugging by
following instructions and identify
when there is a roadblock. They
then use the identified pattern to
fix the mistake.

• Students in a hardware context
could try to fix a device by
resetting it or checking whether it
is connected to a network

Program Development

People develop programs
collaboratively and for a
purpose, such as expressing
ideas or addressing problems.

| 50

7. Communicating About Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

7

1A-CS-02

Use appropriate
terminology in
identifying and
describing the
function of common
physical components
of computing
systems (hardware).

A computing system
is composed of
hardware and
software. The
hardware consists of
physical components.
Students should be
able to identify and
describe the function
of external hardware,
such as desktop
computers, laptop
computers, tablet
devices, monitors,
keyboards, mice, and
printers.

7.2

Students should use
language that
articulates what they
are doing and
identifies devices and
concepts they are
using with correct
terminology (e.g.,
program, input, and
debug), and expected
outcomes of their
solutions.

• Students in kindergarten could
be asked to: “Show me what you
use to type the word “and,” or
“Show me what you use to hear
a sound.”

• Students in first grade could be
asked to: “Tell me and show me
how to type the word “and,” or
“Tell me and show me how to
hear the sound.”

• Students in second grade may be
asked to: “1. Tell me how to type
the “and,” or “Tell me how to
hear the sound.

Hardware & Software

A computing system is
composed of hardware and
software. The hardware
consists of physical
components, while the
software provides instructions
for the system. These
instructions are represented
in a form that a computer can
understand.

| 51

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1A-CS-03

Describe basic
hardware and
software problems
using accurate
terminology.

Problems with
computing systems
have different causes.
Students at this level
do not need to
understand those
causes. Still, they
should be able to
communicate a
problem with
accurate terminology
(e.g., when an app or
program is not
working as expected,
a device will not turn
on, the sound does
not work, etc.).

6.2

Students could use
trial and error to fix
simple errors. For
example, a student
may try reordering
the sequence of
commands in a
program.

7.2

Students should use
language that
articulates what they
are doing and
identifies devices and
concepts they are
using with correct
terminology (e.g.,
program, input, and
debug).

• Students use basic computer
terms to describe problems they
may have with hardware and
software.

• Students would be able to use
simple troubleshooting strategies,
including turning a device off and
on to reboot it, closing and
reopening an app, turning on
speakers, or plugging in
headphones.

Troubleshooting

Computing systems might
not work as expected
because of hardware or
software problems.
Describing a problem is the
first step toward finding a
solution.

| 52

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1A-NI-04

Explain what
passwords are and
why we use them,
and use strong
passwords to protect
devices and
information from
unauthorized access.

Learning to protect
one’s device or
information from
unwanted use by
others is an essential
first step in learning
about cybersecurity.

7.3

Students should
apply these concepts
to computational
ideas and creations.

• Students are not required to use
multiple strong passwords. They
should appropriately use and
protect the passwords they are
required to use.

Cybersecurity

Connecting devices to a
network or the Internet
provides many benefits. Still,
care must be taken to use
authentication measures,
such as strong passwords, to
protect devices and
information from
unauthorized access.

Pr
ac

tic
e

7

1A-AP-13

Give attribution when
using the ideas and
creations of others
while developing
programs

Using computers
comes with a level of
responsibility. Proper
attribution at this
stage does not
require a formal
citation, such as in a
bibliography or works
cited document.

7.3

Students should
apply these concepts
to computational
ideas and creations.

• Students could credit artifacts that
were created by others, such as
pictures, music, and code. Credit
could be given if presenting their
work orally to the class, or in
writing, if sharing work on a class
blog or website.

Program Development

People develop programs
collaboratively and for a
purpose, such as expressing
ideas or addressing problems.

| 53

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1A-AP-15

Using correct
terminology, describe
steps are taken and
choices made during
the iterative process
of program
development.

At this stage,
students should be
able to talk or write
about the goals and
expected outcomes
of the programs they
create and the
choices that they
made when creating
programs.

7.2

Students should use
language that
articulates what they
are doing and
identifies devices and
concepts they are
using with correct
terminology (e.g.,
program, input, and
debug).

• Students use computer science
vocabulary when writing or saying
what steps they took. For
example, I wrote a “program” to
find pictures in my story.

• Students could describe outcomes
by using coding journals,
discussions with a teacher, class
presentations, or blogs.

Program Development

People develop programs
collaboratively and for a
purpose, such as expressing
ideas or addressing problems.

Pr
ac

tic
e

7

1A-IC-16

Compare how people
live and work before
and after the
implementation or
adoption of new
computing
technology.

Computing
technology has
positively and
negatively changed
the way people live
and work. In the past,
if students wanted to
read about a topic,
they needed access
to a library.

7

Students with
guidance, present
basic data through
the use of visual
representations,
using language that
articulates what they
are doing and
identifies devices and
concepts they are
using with correct
terminology while
applying these
concepts to
computational ideas
and creations.

• Students look at the technology
that was around ten years ago
and try to find current technology
to compares.

• Students hear stories about how
people used to live.

• Students create and share stories
about what it may look like in the
future.

• Students may view and read the
information on the Internet about
a topic, or they can download e-
books about it directly to a device.

Culture

Computing technology has
positively and negatively
changed the way people live
and work. Computing devices
can be used for
entertainment and as
productivity tools, and they
can affect relationships and
lifestyles.

| 54

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1A-IC-18

Keep login
information private,
and log off devices
appropriately

People use
computing
technology in ways
that can help or hurt
themselves or others.
Harmful behaviors,
such as sharing
private information
and leaving public
devices logged in,
should be recognized
and avoided.

7.3

Students should
apply these concepts
to computational
ideas and creations.

• Students should know not to
share their username and
password with other people.

• Students, when finishing using a
computer, should always logoff.
Logging off will ensure people
who use the computer after you
are not able to see your
documents.

• Students show the teacher they
have logged off the computer.

• Students should know not to
share usernames and passwords,
and teachers can keep the
information until students
memorize it.

Social Interactions

Computing has positively and
negatively changed the way
people communicate. People
can have access to
information and each other
instantly, anywhere, and at
any time, but they are at the
risk of cyberbullying and
reduced privacy

| 55

GRADES 3–5 CS STANDARDS & PRACTICES
Purpose: CS education for students in grades 3–5 is focused on the continued expansion and deepening of foundational knowledge, such
as learning how hardware and software work in tandem to move data, communicating with data, and the added value of diverse
perspectives. Examples of CS in 3rd–5th grade classrooms include using Excel to organize and create visual data representations to answer
questions. Samples of student performance are provided for teachers and instructional staff to be better equipped to develop CS activities
and courses that meet the state requirements.

1. Fostering an Inclusive Computing Culture
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

1

1B-AP-13

Use an iterative
process to plan the
development of a
program by including
others’ perspectives
and considering user
preferences.

Planning is an
essential part of the
iterative process of
program
development.

1.1

Students should be
presented with
perspectives from
people with different
backgrounds, ability
levels, and points of
view.

5.1

Students with
scaffolding should
gain greater
independence and
sophistication in the
planning, design, and
evaluation of artifacts

• Students outline key features,
time and resource constraints, and
user expectations.

• Students could document the
plan as, for example, a storyboard,
flowchart, pseudocode, or story
map.

Program Development

People develop programs
using an iterative process
involving design,
implementation, and review.
Design often involves reusing
existing code or remixing
other programs within a
community. People
continuously review whether
programs work as expected,
and they fix or debug, parts
that do not. Repeating these
steps enables people to
refine and improve programs

| 56

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

1

1B-IC-19

Brainstorm ways to
improve the
accessibility and
usability of
technology products
for the diverse needs
and wants of users.

The development and
modification of
computing
technology are driven
by people’s needs
and wants and can
affect groups
differently.
Anticipating the
needs and wants of
diverse end-users
requires students to
purposefully consider
potential
perspectives of users
with different
backgrounds, ability
levels, points of view,
and disabilities.

1.2

Students should
consider the
preferences of people
who might use their
products.

• Students may consider using
both speech and text when they
wish to convey information in a
game.

• Students may also wish to vary
the types of programs they
create, knowing that not
everyone shares their tastes.

Culture

The development and
modification of computing
technology are driven by
people’s needs and wants
and can affect groups
differently. Cultural practices
can influence computing
technologies

Pr
ac

tic
e

1

1B-IC-20

Seek diverse
perspectives for the
purpose of improving
computational
artifacts.

Computing provides
the possibility for
collaboration and
sharing of ideas and
allows the benefit of
diverse Perspectives,
another grade level,
forums, or website
comments,

1.1

Students should be
presented with
perspectives from
people with different
backgrounds, ability
levels, and points of
view.

• Students could seek feedback
from other groups in their class or
students from multiple sources for
the purpose of improving
computational artifacts

• Students, with guidance from
their teacher, could use video
conferencing tools or other online
collaborative spaces, such as
blogs, wikis, to gather feedback
from individuals and groups
about programming projects.

Social Interactions

Computing technology allows
for local and global
collaboration. By facilitating
communication and
innovation, computing
influences many social
institutions such as family,
education, religion, and the
economy.

| 57

2. Collaborating Around Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

2

1B-AP-16

Take on varying roles,
with teacher
guidance, when
collaborating with
peers during
the design,
implementation, and
review stages of
program
development.

Collaborative
computing is the
process of
performing a
computational task
by working in pairs or
on teams. Because it
involves asking for
the contributions and
feedback of others,
effective
collaboration can
lead to better
outcomes than
working
independently.

2.2

Students take on
various roles, with the
teacher guiding this
process by providing
collaborative
structures. For
example, students
may take turns in
different roles on the
project, such as note-
taker, facilitator, or
“driver” of the
computer.

• Students take turns in different
roles during program
development, such as note-taker,
facilitator, program tester, or
“driver” of the computer.

Program Development

People develop programs
using an iterative process
involving design,
implementation, and review.
Design often involves reusing
existing code or remixing
other programs within a
community. People
continuously review whether
programs work as expected,
and they fix or debug, parts
that do not. Repeating these
steps enables people to
refine and improve programs

| 58

3. Recognizing & Defining Computational Problems
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

3

1B-NI-05

Discuss real-world
cybersecurity
problems and how
personal information
can be protected.

Just as we protect our
personal property
offline, we also need
to protect our
devices and the
information stored
on them. Information
can be protected
using various security
measures. These
measures can be
physical and digital.

3.1

Students should ask
clarifying questions
to understand
whether a problem or
part of a problem can
be solved using a
computational
approach.

• Students could discuss or use a
journaling or blogging activity to
explain, orally, or in writing about
topics that relate to personal
cybersecurity issues.

• Students could choose discussion
topics based on current events
related to cybersecurity or topics
that apply to students, such as:
why is it necessary to back up
data to guard against loss; how
to create strong passwords and
the importance of not sharing
passwords; or why we should
install and keep anti-virus
software updated to protect data
and systems.

Cybersecurity

Information can be protected
using various security
measures. These measures
can be physical and digital.

| 59

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

3

1B-AP-11

Decompose (break
down) problems into
smaller, manageable
subproblems to
facilitate the program
development
process.

Decomposition is the
act of breaking down
tasks into simpler
tasks.

3.2

Students should
decompose larger
problems into
manageable smaller
problems. For
example, young
students may think of
an animation as
multiple scenes and
thus create each
scene independently.

• Students could decompose
(break down) problems into
smaller, manageable
subproblems to facilitate the
program (coding or problem-
solving in other topics)
development process.

• Students could create an
animation by separating a story
into different scenes. For each
scene, they would select a
background, place characters,
and program actions.

Modularity

Programs can be broken
down into smaller parts to
facilitate their design,
implementation, and review.
Programs can also be created
by incorporating smaller
portions of programs that
have been created.

Pr
ac

tic
e

3

1B-IC-18

Discuss computing
technologies that
have changed the
world, and express
how those
technologies
influence, and are
influenced by,
cultural practices.

New computing
technology and
existing technologies
are modified for
many reasons,
including to increase
their benefits,
decrease their risks,
and meet societal
needs.

3.1

Students should ask
clarifying questions
to understand
whether a problem or
part of a problem can
be solved using a
computational
approach.

• Students, with teacher guidance,
could discuss topics that relate to
the history of technology and the
changes in the world due to
technology.

• Topics could be based on current
news content, such as robotics,
wireless Internet, mobile
computing devices, GPS systems,
wearable computing, or how
social media has influenced social
and political changes.

Culture

The development and
modification of computing
technology are driven by
people’s needs and wants
and can affect groups
differently. Computing
technologies influence and
are influenced by cultural
practices.

| 60

4. Developing & Using Abstractions
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

4

1B-CS-02

Model how computer
hardware and
software work
together as a system
to accomplish tasks.

For a person to
accomplish tasks with
a computer, both
hardware and
software are needed.
At this stage, a model
should only include
the basic elements of
a computer system,
such as input, output,
processor, sensors,
and storage.

4.4

Students should
understand that
computers can model
real-world
phenomena, and they
should use existing
computer simulations
to learn about real-
world systems. For
example, they may
use a
preprogrammed
model to explore
how parameters
affect a system, such
as how rapidly a
disease spread.

• Students, with scaffolded support,
can use the correct vocabulary to
talk about parts of a device that
they can see (i.e., headphones,
headphone jack, mouse,
keyboard, power, on/off buttons,
etc.).

• Students could draw a model on
paper or in a drawing program,
program an animation to
demonstrate it, or demonstrate it
by acting this out in some way.

Hardware and Software

Hardware and software work
together as a system to
accomplish tasks, such as
sending, receiving,
processing, and storing units
of information as bits. Bits
serve as the basic unit of data
in computing systems and
can represent a variety of
information.

| 61

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

1B-NI-04

Model how
information is broken
down into smaller
pieces, transmitted as
packets through
multiple devices over
networks and the
Internet, and
reassembled at the
destination.

Information is sent
and received over
physical or wireless
paths, broken down
into smaller pieces
called packets, which
are sent
independently and
reassembled at the
destination.

4.4

Students should
understand that
computers can model
real-world
phenomena, and they
should use existing
computer simulations
to learn about real-
world systems. For
example, they may
use a
preprogrammed
model to explore
how parameters
affect a system, such
as how rapidly a
disease spread.

• Students can demonstrate their
understanding of this flow of
information by drawing a model
of the way packets are
transmitted or programming an
animation to show how packets
are transmitted or demonstrating
this through an unplugged
activity which has them act it out
in some way.

Network Communication &
Organization

Information needs a physical
or wireless path to travel to
be sent and received, and
some paths are better than
others. Information is broken
into smaller pieces, called
packets that are sent
independently and
reassembled at the
destination. Routers and
switches accurately send
packets across paths to their
destinations.

| 62

5. Creating Computational Artifacts
Standards Description Practice

Progression Samples of student performance Sub-Concept

Pr
ac

tic
e

5

1B-AP-09

Create programs that
use variables to store
and modify data.

Variables are used to
store and modify
data. At this level,
understanding how
to use variables is
sufficient.

5.2

Students should
focus on artifacts of
personal importance.

• Students may use mathematical
operations to add to the score of a
game or subtract from the number of
lives available in a game.

• Students can use a variable as a
countdown timer is another example.

Variables

Programming languages
provide variables, which are
used to store and modify
data. The data type
determines the values and
operations that can be
performed on that data.

Pr
ac

tic
e

5

1B-AP-10

Create programs that
include sequences,
events, loops, and
conditionals.

Control structures
specify the order
(sequence) in which
instructions are
executed within a
program and can be
combined to support
the creation of more
complex programs.
Events allow portions
of a program to run
based on a specific
action.

5.2

Students should
focus on artifacts of
personal importance.

• Students could write a program to
explain the water cycle, and when a
specific component is clicked (event),
the program will show information
about that part of the water cycle.
Conditionals allow for the execution of
a portion of code in a program when a
specific condition is true.

• Students could write a math game that
asks multiplication fact questions and
then uses a conditional to check
whether the answer that was entered is
correct. Loops allow for the repetition
of a sequence of code multiple times.

• Students can in a program that
produces an animation about a famous
historical character; students could use
a loop to have the character walk
across the screen as they introduce
themselves.

Control

Control structures, including
loops, event handlers, and
conditionals, are used to
specify the flow of execution.
Conditionals selectively
execute or skip instructions
under different conditions.

| 63

Standards Description Practice
Progression Samples of student performance Sub-Concept

Pr
ac

tic
e

5

1B-AP-12

Modify, remix, or
incorporate portions
of an existing
program into one’s
own work, to develop
something new or
add more advanced
features.

Programs can be
broken down into
smaller parts, which
can be incorporated
into new or existing
programs.

5.3

Students should
attempt to use
existing solutions to
accomplish the
desired goal. For
example, students
could attach a
programmable light
sensor to a physical
artifact they have
created to make it
respond to light.

• Give credit where credit is due.
Observe intellectual property rights
and give appropriate attribution when
creating or remixing programs.

• Students could modify prewritten code
from a single-player game to create a
two-player game: with slightly different
rules; remix and add another scene to
an animated story; use code to make a
ball bounce from another program in a
new basketball game, or modify an
image created by another student.

Modularity

Programs can be broken
down into smaller parts to
facilitate their design,
implementation, and review.
Programs can also be created
by incorporating smaller
portions of programs that
have already been created.

| 64

6. Testing and Refining Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

6

1B-CS-03

Determine potential
solutions to solve
simple hardware and
software problems
using common
troubleshooting
strategies.

Although computing
systems may vary,
common
troubleshooting
strategies can be
used on all of them.

6.2

Students could use
trial and error to fix
simple errors. For
example, a student
may try reordering
the sequence of
commands in a
program

• Students should be able to
identify solutions to problems
such as the device not
responding, no power, no
network, app crashing, no sound,
or password entry not working.

• Students could solve errors that
occur at school by using various
strategies: such as rebooting the
device; checking for power;
checking network availability;
closing and reopening an app;
making sure to turn speakers on;
headphones are plugged in, and
making sure that the caps lock
key is not on, to solve these
problems, when possible.

Troubleshooting

Computing systems share
similarities, such as the use of
power, data, and memory.
Common troubleshooting
strategies, such as checking
that power is available,
checking that physical and
wireless connections are
working, and clearing out the
working memory by
restarting programs or
devices, are effective for
many systems.

| 65

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

1B-AP-08

Compare and refine
multiple algorithms
for the same task and
determine which is
the most appropriate.

Different algorithms
can achieve the same
result, though
sometimes one
algorithm might be
most appropriate for
a specific situation.

6.3

Students’ progress,
the process of
evaluation, and
refinement should
focus on improving
performance and
reliability. For
example, students
could observe a
robot in a variety of
lighting conditions to
determine that a light
sensor should be less
sensitive.

• Students should be able to look at
different ways to solve the same
task and decide which would be
the best solution.

• Students could use a map and
plan multiple algorithms to get
from one point to another. They
could look at routes suggested by
mapping software and change the
route to something that would be
better, based on which route is
shortest or fastest or would avoid
a problem.

• Students might compare
algorithms that describe how to
get ready for school. Another
example might be to write
different algorithms to draw a
regular polygon and determine
which algorithm would be the
easiest to modify or repurpose to
draw a different polygon.

Algorithms

Different algorithms can
achieve the same result.
Some algorithms are more
appropriate for a specific
context than others.

| 66

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

1B-AP-15

Test and debug
(identify and fix
errors) a program or
algorithm to ensure it
runs as intended.

As students develop
programs, they
should continuously
test those programs
to see that they do
what was expected
and fix (debug), any
errors.

6.1

Students should test
computational
artifacts by
considering potential
errors, such as what
will happen if a user
enters invalid input.

6.2

Students could use
trial and error to fix
simple errors. For
example, a student
may try reordering
the sequence of
commands in a
program

• Students should be able to debug
simple errors in programs created
by others successfully.

• Students, in a hardware context,
could try to fix a device by
resetting it or checking whether it
is connected to a network

Program Development

People develop programs
using an iterative process
involving design,
implementation, and review.
Design often involves reusing
existing code or remixing
other programs within a
community. People
continuously review whether
programs work as expected,
and they fix or debug, parts
that do not. Repeating these
steps enables people to
refine and improve programs.

| 67

7. Communicating About Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

7

1B-CS-01

Describe how internal
and external parts of
computing devices
function to form a
system.

Computing devices
often depend on
other devices or
components.
Students should be
able to describe how
devices and
components interact
using correct
terminology.

7.2

Students should
identify the goals and
expected outcomes
of their solutions

• Students describe how internal
and external parts of computing
devices function (Input, Process,
Store, Output) to form a system.
For example, a robot depends on
a physically attached light sensor
to detect changes in brightness,
whereas the light sensor depends
on the robot for power.

• Students could describe how
keyboard input, or a mouse click
could cause an action to happen
or information displayed on a
screen; this could only happen
because the computer has a
processor to evaluate what is
happening externally and produce
corresponding responses.

Devices

Computing devices may be
connected to other devices or
components to extend their
capabilities, such as sensing
and sending information.
Connections can take many
forms, such as physical or
wireless. Together, devices
and components form a
system of interdependent
parts that interact for a
common purpose.

| 68

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1B-DA-06

Organize and present
collected data visually
to highlight
relationships and
support a claim.

Raw data has little
meaning on its own.
Data sorted or
grouped to provide
additional clarity.
Organizing data can
make interpreting
and communicating it
to others more
accessible. The same
data could be
manipulated in
different ways to
emphasize aspects or
parts of the data set.

7.1

Students should, with
guidance, present
basic data using
visual
representations, such
as storyboards,
flowcharts, and
graphs.

• Students use technology to
organize and present collected
data visually to show relationships
and support a claim.

• Students use data to tell or view a
process, supporting an idea
visually. It can be expanded to
say: why a result happens,
acknowledging the owner of the
idea or knowledge.

• Students may use a data set of
sports teams that could be sorted
by wins, points scored, or points
allowed, and a data set of weather
information could be sorted by
high temperatures, low
temperatures, or precipitation.

Collection

People select digital tools for
the collection of data based
on what is being observed
and how the data will be
used. For example, a digital
thermometer is used to
measure temperature, and a
GPS sensor is used to track
locations.

Visualization &
Transformation

People select aspects and
subsets of data to be
transformed, organized,
clustered and categorized to
provide different views and
communicate insights gained
from the data.

| 69

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1B-DA-07

Use data to highlight
or propose cause-
and-effect
relationships, predict
outcomes, or
communicate an
idea.

The accuracy of data
analysis is related to
how realistically data
is represented.
Inferences or
predictions based on
data are less likely to
be accurate if the
data is not sufficient
or if the data is
incorrect in some
way.

7.1

Students should, with
guidance, present
basic data with visual
representations, such
as storyboards,
flowcharts, and
graphs.

• Use data to highlight or propose
cause-and-effect relationships,
predict outcomes, or
communicate an idea.

• Students could refer to data when
communicating an idea. For
example, to explore the
relationship between speed, time,
and distance, students could
operate a robot at a uniform
speed, and at increasing time
intervals to predict how far the
robot travels at that speed.

• Students could record the
temperature at noon each day as
a basis to show that temperatures
are higher in certain months of
the year. If temperatures are not
recorded on non-school days or
are recorded incorrectly or at
different times of the day, the
data would be incomplete, and
the ideas communicated could be
inaccurate.

Inference & Models

The accuracy of inferences
and predictions is related to
how realistically data is
represented. Many factors
influence the accuracy of
inferences and predictions,
such as the amount and
relevance of data collected.

| 70

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1B-AP-14

Observe intellectual
property rights and
give appropriate
attribution when
creating or remixing
programs.

Intellectual property
rights can vary by
country, but
copyright laws give
the creator of a work
a set of rights that
prevents others from
copying the work and
using it in ways that
they may not like.

5.2

Students should
focus on artifacts of
personal importance.

7.3

Students should
identify instances of
remixing, when ideas
are borrowed and
iterated upon, and
give proper
attribution.

• Students could identify instances
of remixing, when ideas are
borrowed and iterated upon, and
credit the original creator.
Students should also consider
common licenses that place
limitations or restrictions on the
use of computational artifacts,
such as images and music
downloaded from the Internet.

• Students’ attributions should be
written in the format required by
the teacher and should always be
included in any programs shared
online.

Program Development

People develop programs
using an iterative process
involving design,
implementation, and review.
Design often involves reusing
existing code or remixing
other programs within a
community. People
continuously review whether
programs work as expected,
and they fix or debug, parts
that do not. Repeating these
steps enables people to
refine and improve programs.

Pr
ac

tic
e

7

1B-AP-17

Describe choices
made during
program
development using
code comments,
presentations, and
demonstrations.

People communicate
about their code to
help others
understand and use
their programs.
Another purpose of
communicating one’s
design choices is to
show an
understanding of
one’s work.

7.2

Students should
identify the goals and
expected outcomes
of their solutions.

• These explanations could manifest
themselves as in-line code
comments for collaborators and
assessors, or as parts of a
summative presentation, such as a
code walk-through or coding
journal.

Program Development

People develop programs
using an iterative process
involving design,
implementation, and review.
Design often involves reusing
existing code or remixing
other programs within a
community. People
continuously review whether
programs work as expected,
and they fix or debug, parts
that do not.

| 71

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

1B-IC-21

Use public domain or
creative commons
media, and refrain
from copying or
using material
created by others
without permission.

Ethical complications
arise from the
opportunities
provided by
computing. The ease
of sending and
receiving copies of
media on the
Internet, such as
video, photos, and
music, creates the
opportunity for
unauthorized use,
such as online piracy,
and disregard of
copyrights.

7.3

Students should
identify instances of
remixing, when ideas
are borrowed and
iterated upon, and
give proper
attribution.

• Students should consider the
licenses on computational
artifacts that they wish to use. For
example, the license on a
downloaded image or audio file
may have restrictions that prohibit
modification, require attribution,
or prohibit use entirely.

Safety Law & Ethics

Ethical complications arise
from the opportunities
provided by computing. The
ease of sending and receiving
copies of media on the
Internet, such as video,
photos, and music, creates
the opportunity for
unauthorized use, such as
online piracy, and disregard
of copyrights, such as lack of
attribution.

| 72

GRADES 6–8 STANDARDS & PRACTICES
Purpose: CS education for students in grades 6–8 is focused on gaining a more in-depth understanding that computers simply execute
instructions, that the quality of data varies, and that data can be misrepresented. Samples of student performance are provided for
teachers and instructional staff to be better equipped to develop CS activities and courses that meet the state requirements.

1. Fostering an Inclusive Computing Culture
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

1

2-IC-21

Discuss issues of bias
and accessibility in
the design of existing
technologies

Students should test
and discuss the
usability of various
technology tools
(e.g., apps, games,
and devices) with the
teacher’s guidance.

1.2

Students should be
able to evaluate the
accessibility of a
product to a broad
group of end-users,
such as people with
various disabilities.

• Students can discuss issues of bias
and accessibility in the design of
existing technologies.

• Students can discuss facial
recognition software that works
better for lighter skin tones was
likely developed with a
homogeneous testing group and
could improve by sampling a
more diverse population.

• Students discussing accessibility
may notice that allowing a user to
change font sizes and colors will
not only make an interface usable
for people with low vision but also
benefits users in various
situations, such as in bright
daylight or a dark room

Culture

Advancements in computing
technology change people’s
everyday activities. Society is
faced with tradeoffs due to
the increasing globalization
and automation that
computing brings.

| 73

2. Collaborating Around Computing
Standards Accessible

language Practice Progression Samples of student
performance Sub-Concept

Pr
ac

tic
e

2

2-DA-07

Represent data using
multiple encoding
schemes.

Data representations
occur at multiple
levels of abstraction,
from the physical
storage of bits to the
arrangement of
information into
organized formats
(e.g., tables).

4

Students should extract
common features from
more complex
phenomena or
processes. Students
should begin to
understand the
advantages of and be
comfortable using
existing functionalities
(abstractions), including
technological resources
created by other people,
such as libraries and
application
programming interfaces
(APIs).

Within an object-
oriented programming
context, module design
may include defining the
interactions among
objects, combining both
data and procedures,
and documented for
reuse in other programs.

• Students could represent the
same data in multiple ways,
using different methods.

• Students could represent the
same color using binary, RGB
values, hex codes (low-level
representations), as well as
forms understandable by
people, including words,
symbols, and digital displays of
the color (high-level
representations).

• Students should be able to
identify common features in
multiple segments of code and
substitute a single segment that
uses variables to account for the
differences. In a procedure, the
variables would take the form of
parameters.

• Students could be able to
design systems of interacting
modules, each with a well-
defined role that coordinates to
accomplish a common goal.

Storage

Applications store data as a
representation.
Representations occur at
multiple levels, from the
arrangement of information
into organized formats (such
as tables in software) to the
physical storage of bits. The
software tools used to access
information translate the low-
level representation of bits
into a form understandable
by people.

| 74

Standards Accessible
language Practice Progression Samples of student

performance Sub-Concept
Pr

ac
tic

e
2

2-AP-15

Seek and incorporate
feedback from team
members and users
to refine a solution
that meets user
needs.

Development teams
that employ user-
centered design
create solutions (e.g.,
programs and
devices) that can
have a significant
societal impact, such
as an app that allows
people with speech
difficulties to
translate hard-to-
understand
pronunciation into
understandable
language.

2.3

Students should engage
in active listening by
using questioning skills
and should respond
empathetically to others.
As they progress,
students should be able
to receive feedback from
multiple peers and
should be able to
differentiate opinions.

• Students should begin to seek
diverse perspectives throughout
the design process to improve
their computational artifacts.

• Students should consider the
end-user may include usability,
accessibility, age-appropriate
content, respectful language,
user perspective, pronoun use,
color contrast, and ease of use.

Program Development

People design meaningful
solutions for others by
defining a problem’s criteria
and constraints, carefully
considering the diverse needs
and wants of the community
and testing whether criteria
and constraints are met.

Pr
ac

tic
e

2

2-AP-18

Distribute tasks and
maintain a project
timeline when
collaboratively
developing
computational
artifacts.

Collaboration is a
common and crucial
practice in
programming
development. Often,
many individuals and
groups work on the
interdependent parts
of a project together.

2.2

Students should become
less dependent on the
teacher assigning roles
and become more adept
at assigning roles within
their teams. For example,
they should decide
together how to take
turns in different roles.

• Students could assume pre-
defined roles within their teams
and manage the project
workflow using structured
timelines. With teacher
guidance, they will begin to
create collective goals,
expectations, and equitable
workloads.

• Students may divide the design
stage of a game into planning
the storyboard, flowchart, and
different parts of the game
mechanics. They can then assign
deadlines.

Program Development

People design meaningful
solutions for others by
defining a problem’s criteria
and constraints, carefully
considering the diverse needs
and wants of the community
and testing whether criteria
and constraints were met.

| 75

Standards Accessible
language Practice Progression Samples of student

performance Sub-Concept
Pr

ac
tic

e
2

2-IC-22

Collaborate with
many contributors
through strategies
such as
crowdsourcing or
surveys when
creating a
computational
artifact.

Crowdsourcing is
gathering services,
ideas, or content
from a large group of
people, especially
from the online
community. It can be
done at the local
level (e.g., classroom
or school) or global
level (e.g., age-
appropriate online
communities, like
Scratch and
Minecraft).

2.4

Students should also
begin to make decisions
about which tools would
be best to use and when
to use them.

5.2

Students expressions
should become more
complex and of
increasingly broader
significance

• Student groups could combine
animations to create a digital
community mosaic. They could
also solicit feedback from many
people through the use of
online communities and
electronic surveys.

Social Interactions

People can organize and
engage around issues and
topics of interest through
various communication
platforms enabled by
computing, such as social
networks and media outlets.
These interactions allow
issues to be examined using
multiple viewpoints from a
diverse audience.

| 76

3. Recognizing & Defining Computational Problems
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

3

2-CS-01

Recommend
improvements to the
design of computing
devices, based on an
analysis of how users
interact with the
devices.

The study of human-
computer interaction
(HCI) can improve the
design of devices,
including both
hardware and
software. Including
consideration of
usability through
several lenses,
including
accessibility,
ergonomics, and
learnability.

3.3

Students should
systematically
evaluate the
feasibility of using
computational tools
to solve given
problems or
subproblems, such as
through a cost-
benefit analysis.

• Students could make
recommendations for existing
devices (e.g., a laptop, phone, or
tablet) or design components or
interface (e.g., create controllers)
by considering usability through
several lenses, including
accessibility, ergonomics, and
learnability

• Students can research, assistive
devices capabilities such as
scanning written information and
converting it to speech.

Devices

The interaction between
humans and computing
devices presents advantages,
disadvantages, and
unintended consequences.
The study of human-
computer interaction can
improve the design of devices
and extend the abilities of
humans.

Pr
ac

tic
e

3

2-AP-13

Decompose
problems and
subproblems into
parts to facilitate the
design,
implementation, and
review of programs.

Students should
break down problems
into subproblems,
which can be further
broken down into
smaller parts.

3.2

Students should
break down a
program into sub-
goals getting input
from the user,
processing the data,
and displaying the
result to the user.

• Students as part of program
development focus on one piece
at a time (e.g., getting input from
the user, processing the data, and
displaying the result to the user).

• Students can work on different
parts of a problem at the same
time, and animations can be
decomposed into multiple scenes,
which can be independently
developed.

Modularity

Programs use procedures to
organize code, hide
implementation details, and
make code easier to reuse.
Procedures can be
repurposed in new programs.
Defining parameters for
procedures can generalize
behavior and increase
reusability.

| 77

4. Developing and Using Abstractions
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

4

2-AP-14

Create procedures
with parameters to
organize code and
make it easier to
reuse.

Students should
create procedures
and functions that
are used multiple
times within a
program to repeat
groups of
instructions. These
procedures can be
generalized by
defining parameters
that create different
outputs for a wide
range of inputs.

4.1

Students should
extract common
features from more
complex phenomena
or processes.

4.3

Students should be
able to design
systems of
interacting modules,
each with a well-
defined role that
coordinates to
accomplish a
common goal.

• Students can create a procedure
to draw a circle, which involves
many instructions, but all of them
can be invoked with one
instruction, such as “drawCircle.”
By adding a radius parameter, the
user can easily draw circles of
different sizes.

• Students should be able to
identify common features in
multiple segments of code and
substitute a single segment that
uses variables to account for the
differences. In a procedure, the
variables would take the form of
parameters.

• Students may design module,
with objects that include defining
the interactions among objects. At
this stage, these modules, which
combine both data and
procedures, can be designed and
documented for reuse in other
programs.

Modularity

Programs use procedures to
organize code, hide
implementation details, and
make code easier to reuse.
Procedures can be
repurposed in new programs.
Defining parameters for
procedures can generalize
behavior and increase
reusability.

| 78

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

2-NI-04

Model the role of
protocols in
transmitting data
across networks and
the Internet.

Protocols are rules
that define how
messages are sent
between computers.
They determine how
quickly and securely
information is
transmitted across
networks and the
Internet, how to
handle errors in
transmission. The
priority at this grade
level is understanding
the purpose of
protocols and how
they enable secure
and errorless
communication.
Knowledge of the
details of how
specific protocols
work is not expected.

4.4

Students should
model phenomena as
systems, with rules
governing the
interactions within
the system. Students
should analyze and
evaluate these
models against real-
world observations.

• Students could model how data is
sent using protocols to choose
the fastest path, to deal with
missing information, and to
deliver sensitive data

• Students could devise a plan for
resending lost information or for
interpreting a picture that has
missing pieces.

• Students might create a simple
producer-consumer ecosystem
model using a programming tool.

Network Communication &
Organization

Computers send and receive
information based on a set of
rules called protocols.
Protocols define how
messages between
computers are structured and
sent. Considerations of
security, speed, and reliability
are used to determine the
best path to send and receive
data.

| 79

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

2-NI-06

Apply multiple
methods of
encryption to model
the secure
transmission of
information.

Encryption can be as
simple as letter
substitution or as
complicated as
modern methods
used to secure
networks and the
Internet.

4.4

Students should
model phenomena as
systems, with rules
governing the
interactions within
the system. Students
should analyze and
evaluate these
models against real-
world observations.

• Students could encode and
decode messages using a variety
of encryption methods, and they
should understand the different
levels of complexity used to hide
or secure information.

• Students could secure messages
using methods such as Caesar
ciphers or steganography (i.e.,
hiding messages inside a picture
or other data). They can also
model more complicated
methods, such as public-key
encryption, through unplugged
activities.

• Students might create a simple
producer-consumer ecosystem
model using a programming tool.

Cybersecurity

The information sent and
received across networks can
be protected from
unauthorized access and
modification in a variety of
ways, such as encryption to
maintain its confidentiality
and restricted access to
maintain its integrity. Security
measures to safeguard online
information proactively
address the threat of
breaches to personal and
private data.

| 80

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

2-AP-10

Use flowcharts
and/or pseudocode
to address complex
problems as
algorithms.

Complex problems
are problems that
would be difficult for
students to solve
computationally.
Students should use
pseudocode and
flowcharts to
organize and
sequence an
algorithm that
addresses a complex
problem, even
though they may not
program the
solutions.

4.1

Students should
extract common
features from more
complex phenomena
or processes.

4.4

Students should
model phenomena as
systems, with rules
governing the
interactions within
the system. Students
should analyze and
evaluate these
models against real-
world observations.

• Students might express an
algorithm that produces a
recommendation for purchasing
sneakers based on inputs such as
size, colors, brand, comfort, and
cost. Testing the algorithm with a
wide range of inputs and users
allows students to refine their
recommendation algorithm and
to identify other inputs they may
have initially excluded.

• Students might create a simple
producer-consumer ecosystem
model using a programming tool.

• Students could identify common
features in multiple segments of
code and substitute a single
segment that uses variables to
account for the differences. In a
procedure, the variables would
take the form of parameters.

Algorithms

Algorithms affect how people
interact with computers and
the way computers respond.
People design algorithms that
are generalizable to many
situations. Readable
algorithms are more
comfortable to follow, test,
and debug.

| 81

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

2-AP-16

Incorporate existing
code, media, and
libraries into original
programs, and give
attribution.

Building on the work
of others enables
students to produce
more interesting and
powerful creations.
Students should give
attribution to the
original creators to
acknowledge their
contributions.

4.2

Eventually, students
should understand
the advantages of
and be comfortable
using existing
functionalities
(abstractions),
including
technological
resources created by
other people, such as
libraries and
application
programming
interfaces (APIs).

7.3

Students should also
recognize the
contributions of
collaborators.

• Students should use portions of
code, algorithms, and/or digital
media in their programs and
websites. At this level, they may
also import libraries and connect
to web application program
interfaces (APIs).

• Students in creating a side-
scrolling game may incorporate
portions of code that create a
realistic jump movement from
another person’s game, and they
may also import Creative
Commons-licensed images to use
in the background.

Program Development

People design meaningful
solutions for others by
defining a problem’s criteria
and constraints, carefully
considering the diverse needs
and wants of the community
and testing whether criteria
and constraints were met.

| 82

5. Creating Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

5

2-CS-02

Design projects that
combine hardware
and software
components to
collect and exchange
data.

Collecting and
exchanging data
involves input,
output, storage, and
processing. When
possible, students
should select the
hardware and
software components
for their project
designs by
considering factors
such as functionality,
cost, size, speed,
accessibility, and
aesthetics.

5.1

Students should
systematically plan
the development of a
program or artifact
and intentionally
apply computational
techniques, such as
decomposition and
abstraction, along
with knowledge
about existing
approaches to artifact
design.

• Students can use both hardware
and software to design a project
that shares data

• Students can choose components
for a mobile app that could
include accelerometer, GPS, and
speech recognition. The choice of
a device that connects wirelessly
through a Bluetooth connection
versus a physical USB connection
involves a tradeoff between
mobility and the need for an
additional power source for the
wireless device

Hardware & Software

Hardware and software
determine a computing
system’s capability to store
and process information. The
design or selection of a
computing system involves
multiple considerations and
potential tradeoffs, such as
functionality, cost, size, speed,
accessibility, and aesthetics.

| 83

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

2-AP-12

Design and iteratively
develop programs
that combine control
structures, including
nested loops and
compound
conditionals.

Control structures
can be combined in
many ways. Nested
loops are loops
placed within loops.
Compound
conditionals combine
two or more
conditions in a logical
relationship (e.g.,
using AND, OR, and
NOT), and nesting
conditionals within
one another allows
the result of one
conditional on
leading to another.

5.1

Students should
systematically plan
the development of a
program or artifact
and intentionally
apply computational
techniques, such as
decomposition and
abstraction, along
with knowledge
about existing
approaches to artifact
design.

5.2

Students’ expressions
should become more
complex and of
increasingly broader
significance.

• Students can, when programming
an interactive story, use a
compound conditional within a
loop to unlock a door only if a
character has a key AND is
touching the door.

Control

Programmers select and
combine control structures,
such as loops, event handlers,
and conditionals, to create
more complex program
behavior.

| 84

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

2-DA-09

Refine computational
models based on the
data they have
generated.

A model may be a
programmed
simulation of events
or a representation of
how various data is
related. To refine a
model, students need
to consider which
data points are
relevant, how data
points relate to each
other, and if the data
is accurate.

5.3

Students should
attempt to use
existing solutions to
accomplish the
desired goal. For
example, students
could attach a
programmable light
sensor to a physical
artifact they have
created to make it
respond to light.

• Students may predict how far a
ball will travel based on a table of
data related to the height and
angle of a track. The students
could then test and refine their
model by comparing predicted
versus actual results and
considering whether other factors
are relevant (e.g., size and mass of
the ball).

• Students could refine game
mechanics based on test
outcomes to make the game
more balanced or fair.

Inference & Models

Computer models can be
used to simulate events,
examine theories and
inferences, or make
predictions with either a few
or millions of data points.
Computer models are
abstractions that represent
phenomena and use data and
algorithms to emphasize key
features and relationships
within a system. As more data
is automatically collected,
models can be refined.

Pr
ac

tic
e

5

2-AP-11

Create clearly named
variables that
represent different
data types and
perform operations
on their values.

A variable is like a
container with a
name, in which the
contents may change,
but the name
(identifier) does not.
When planning and
developing
programs, students
should decide when
and how to declare
and name new
variables.

5.1

Students should
systematically plan
the development of a
program or artifact
and intentionally
apply computational
techniques, such as
decomposition and
abstraction, along
with knowledge
about existing
approaches to artifact
design.

• Students should use naming
conventions to improve program
readability. Examples of
operations include adding points
to the score, combining user input
with words to make a sentence,
changing the size of a picture, or
adding a name to a list of people.

Variables

Programmers create variables
to store data values of
selected types. A meaningful
identifier is assigned to each
variable to access and
perform operations on the
value by name. Variables
enable the flexibility to
represent different situations,
process different sets of data,
and produce different
outputs.

| 85

6. Testing and Refining Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

6

2-DA-08

Collect data using
computational tools
and transform the
data to make it more
useful and reliable.

As students continue
to build on their
ability to organize
and present data
visually to support a
claim, they will need
to understand when
and how to transform
data for this purpose.

6.3

Students’ evaluation
and refinement
should become an
iterative process that
also encompasses
making artifacts more
usable and
accessible. For
example, students
can incorporate
feedback from a
variety of end-users
to help guide the size
and placement of
menus and buttons in
a user interface

• Students could transform data to
remove errors, highlight or expose
relationships, and make it easier
for computers to process.

• Students could clean data, which
is an essential transformation for
ensuring consistent format and
reducing noise and errors (e.g.,
removing irrelevant responses in a
survey).

• Students can transform collected
data into something meaningful,
preferably visual. An example of a
transformation that highlights a
relationship is representing males
and females as percentages of a
whole.

Collection Visualization &
Transformation

Data can be transformed to
remove errors, highlight, or
expose relationships, and
make it easier for computers
to process.

| 86

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

2-CS-03

Systematically
identify and fix
problems with
computing devices
and their
components.

Since a computing
device may interact
with interconnected
devices within a
system, problems
may not be due to
the specific
computing device
itself but to devices
connected to it.

6.2

Students’ progress,
they should become
more adept at
debugging programs
and begin to
consider logic errors:
cases in which a
program works, but
not as desired. In this
way, students will
examine and correct
their thinking.

• Students could use checklists to
troubleshoot problems with
aircraft systems or use a similar,
structured process to
troubleshoot problems with
computing systems and ensure
that potential solutions are not
overlooked.

• Students could use
troubleshooting strategies to
include following a
troubleshooting flow diagram,
making changes to the software
to see if the hardware will work,
checking connections and
settings, and swapping in working
components.

• Students could step through their
program, line by line, to identify a
loop that does not terminate as
expected.

Troubleshooting

Comprehensive
troubleshooting requires
knowledge of how computing
devices and components
work and interact. A
systematic process will
identify the source of a
problem, whether within a
device or in a more extensive
system of connected devices.

| 87

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

2-AP-17

Systematically test
and refine programs
using a range of test
cases.

Use cases and test
cases are created and
analyzed to meet the
needs of users better
and to evaluate
whether programs
function as intended.
At this level, testing
should become a
deliberate process
that is more iterative,
systematic, and
proactive than at
lower levels.

6.1

Students testing
should become a
deliberate process
that is more iterative,
systematic, and
proactive.

• Students should begin to test
programs by considering
potential errors, such as what will
happen if a user enters invalid
input (e.g., negative numbers and
0 instead of positive numbers).

Program Development

People design meaningful
solutions for others by
defining a problem’s criteria
and constraints, carefully
considering the diverse needs
and wants of the community
and testing whether criteria
and constraints were met.

| 88

7. Communicating About Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

7

2-IC-20

Compare tradeoffs
associated with
computing
technologies that
affect people’s
everyday activities
and career options.

Advancements in
computer technology
are neither wholly
positive nor negative.
However, the ways
that people use
computing
technologies have
tradeoffs.

7.2

Students should
provide
documentation for
end-users that
explains their artifacts
and how they
function, and they
should both give and
receive feedback. For
example, students
could provide a
project overview and
ask for input from
users.

• Students could describe the
positive and negative impacts of
computers that affect daily life
and career options

• Students should consider current
events related to broad ideas,
including privacy, communication,
and automation. For example,
driverless cars can increase
convenience and reduce
accidents, but they are also
susceptible to hacking. The
emerging industry will reduce the
number of taxi and shared-ride
drivers but will create more
software engineering and
cybersecurity jobs.

Culture

Advancements in computing
technology change people’s
everyday activities. Society is
faced with tradeoffs due to
the increasing globalization
and automation that
computing brings.

| 89

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

2-IC-23

Describe tradeoffs
between allowing
information to be
public and keeping
information private
and secure.

Sharing information
online can help
establish, maintain,
and strengthen
connections between
people.

7.2

Students should
provide
documentation for
end-users that
explains their artifacts
and how they
function, and they
should both give and
receive feedback. For
example, students
could provide a
project overview and
ask for input from
users.

• Students can describe the
importance of keeping your
information secure. Example
questions: What are some of the
possible outcomes of having your
data compromised? What are
some methods for maintaining it
securely?

• Students could research artists
and designers that display their
talents and reach a broad
audience. However, security
attacks often start with personal
information that is publicly
available online. Social
engineering is based on tricking
people into revealing sensitive
information and can be thwarted
by being wary of attacks, such as
phishing and spoofing.

Safety Law & Ethics

There are tradeoffs between
allowing information to be
public and keeping
information private and
secure. People can be tricked
into revealing personal
information when more
public information is available
about them online.

| 90

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

2-NI-05

Explain how physical
and digital security
measures protect
electronic
information.

Information that is
stored online is
vulnerable to
unwanted access.
Examples of physical
security measures to
protect data include
keeping passwords
hidden, locking
doors, making back-
up copies on external
storage devices, and
erasing a storage
device before it is
reused.

7.2

Students should
provide
documentation for
end-users that
explains their artifacts
and how they
function, and they
should both give and
receive feedback. For
example, students
could provide a
project overview and
ask for input from
users.

• Students could research digital
security measures, which include
secure router admin passwords,
firewalls that limit access to
private networks, and the use of a
protocol such as HTTPS to ensure
secure data transmission.

Cybersecurity

The information sent and
received across networks can
be protected from
unauthorized access and
modification in a variety of
ways, such as encryption to
maintain its confidentiality
and restricted access to
maintain its integrity. Security
measures to safeguard online
information proactively
address the threat of
breaches to personal and
private data.

| 91

GRADES 9–10 STANDARDS & PRACTICES
Purpose: CS education for students in 9th and 10th grade is focused on deepening understanding of why and how computing
technologies work and then to build upon that conceptual knowledge by creating computational artifacts. Samples of student
performance are provided for teachers and instructional staff to be better equipped to develop CS activities and courses that meet the
state requirements.

1. Fostering an Inclusive Computing Culture
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

1

3A-IC-24

Evaluate the ways
computing impacts
personal, ethical,
social, economic, and
cultural practices.

Computing may
improve, harm, or
maintain practices.
Equity deficits, such
as minimal exposure
to computing, access
to education, and
training
opportunities, are
related to larger,
systemic problems in
society.

1.2

Students should
become aware of
professionally
accepted accessibility
standards and should
be able to evaluate
computational
artifacts for
accessibility. Students
should also begin to
identify potential bias
during the design
process to maximize
accessibility in
product design.

• Students could evaluate the
accessibility of a product to a
broad group of end-users, such as
people who lack access to
broadband or who have various
disabilities.

• Students could begin to identify
potential bias during the design
process to maximize accessibility
in product design.

• Students can test an app and
recommend to its designers that
they respond to verbal commands
to accommodate users who are
blind or have physical disabilities.

Culture

The design and use of
computing technologies and
artifacts can improve, worsen,
or maintain inequitable
access to information and
opportunities.

| 92

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

1

3A-IC-25

Test and refine
computational
artifacts to reduce
bias and equity
deficits.

Biases could include
incorrect
assumptions
developers have
made about their
user base. Equity
deficits include
minimal exposure to
computing, access to
education, and
training
opportunities.

1.2

Students should
become aware of
professionally
accepted accessibility
standards and should
be able to evaluate
computational
artifacts for
accessibility. Students
should also begin to
identify potential bias
during the design
process to maximize
accessibility in
product design.

• Students should begin to identify
potential bias during the design
process to maximize accessibility
in product design and become
aware of professionally accepted
accessibility standards to evaluate
computational artifacts for
accessibility.

• Students can test an app and
recommend to its designers that
they respond to verbal commands
to accommodate users who are
blind or have physical disabilities.

Culture

The design and use of
computing technologies and
artifacts can improve, worsen,
or maintain inequitable
access to information and
opportunities.

| 93

2. Collaborating Around Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

2

3A-AP-22

Design and develop
computational
artifacts working in
team roles using
collaborative tools.

Collaborative tools
could be as
complicated as the
source code version
control system or as
simple as a
collaborative word
processor. Team roles
in pair programming
are driver and
navigator but could
be more specialized
in larger teams. As
programs grow more
complex, the choice
of resources that aid
program
development
becomes increasingly
important and should
be made by the
students.

2.4

Students should use
different
collaborative tools
and methods to
solicit input from not
only team members
and classmates but
also others, such as
participants in online
forums or local
communities.

• Students might work as a team to
develop a mobile application that
addresses a problem relevant to
the school or community,
selecting appropriate tools to
establish and manage the project
timeline; design, share, and revise
graphical user interface elements;
and track planned, in-progress,
and completed components

Program Development

Diverse teams can develop
programs with a broad
impact through careful review
and by drawing on the
strengths of members in
different roles. Design
decisions often involve
tradeoffs. The development
of complex programs is aided
by resources such as libraries
and tools to edit and manage
parts of the program.
Systematic analysis is critical
for identifying the effects of
lingering bugs.

| 94

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

2

3A-IC-27

Use tools and
methods for
collaboration on a
project to increase
connectivity of
people in different
cultures and career
fields.

Many aspects of
society, especially
careers, have been
affected by the
degree of
communication
afforded by
computing. The
increased
connectivity between
people in different
cultures and different
career fields has
changed the nature
and content of many
careers.

2.4

Students should use
different
collaborative tools
and methods to
solicit input from not
only team members
and classmates but
also others, such as
participants in online
forums or local
communities.

• Students could explore different
collaborative tools and methods
used to solicit input from team
members, classmates, and others,
such as participation in online
forums or local communities.

• Students could compare ways
different social media tools could
help a team become more
cohesive

Social Interactions

Many aspects of society,
especially careers, have been
affected by the degree of
communication afforded by
computing. The increased
connectivity between people
in different cultures and
different career fields has
changed the nature and
content of many careers.

| 95

3. Recognizing & Defining Computational Problems
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

3

3A-NI-06

Recommend security
measures to address
various scenarios
based on factors such
as efficiency,
feasibility, and ethical
impacts.

Security measures may
include physical security
tokens, two-factor
authentication, and
biometric verification.
Potential security
problems, such as
denial-of-service attacks,
ransomware, viruses,
worms, spyware, and
phishing, exemplify why
sensitive data should be
securely stored and
transmitted. The timely
and reliable access to
data and information
services by authorized
users, referred to as
availability, is ensured
through adequate
bandwidth, back-ups,
and other measures.

3.3

Students should
include more factors
in their evaluations,
such as how
efficiency affects
feasibility or whether
a proposed approach
raises ethical
concerns

• Students could systematically
evaluate the feasibility of using
computational tools to solve
given problems or subproblems,
such as through a cost-benefit
analysis.

• Students should begin to
include more factors in their
evaluations, such as how
efficiency affects feasibility or
whether a proposed approach
raises ethical concerns.

Cybersecurity

Network security depends
on a combination of
hardware, software, and
practices that control access
to data and systems. The
needs of users and the
sensitivity of data determine
the level of security
implemented.

| 96

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

3

3A-DA-10

Evaluate the tradeoffs
in how data elements
are organized and
where data is stored.

People make choices
about how data
elements are organized
and where data is stored.
These choices affect
cost, speed, reliability,
accessibility, privacy, and
integrity.

3.3

Students should
include more factors
in their evaluations,
such as how
efficiency affects
feasibility or whether
a proposed approach
raises ethical
concerns

• Students could evaluate whether
a chosen solution is most
appropriate for a problem.
Students might consider the
cost, speed, reliability,
accessibility, privacy, and
integrity tradeoffs between
storing photo data on a mobile
device versus in the cloud

Storage

Data can be composed of
multiple data elements that
relate to one another. For
example, population data
may contain information
about age, gender, and
height. People make
choices about how data
elements are organized and
where data is stored. These
choices affect cost, speed,
reliability, accessibility,
privacy, and integrity.

Pr
ac

tic
e

3

3A-AP-17

Decompose
problems into smaller
components through
systematic analysis,
using constructs such
as procedures,
modules, and/or
objects.

At this level, students
should decompose
complex problems into
manageable
subproblems that could
potentially be solved
with programs or
procedures that already
exist.

3.2

Students encounter
complex real-world
problems that span
multiple disciplines or
social systems, and
they should
decompose complex
problems into
manageable
subproblems that
could potentially be
solved with programs
or procedures that
already exist.

• Students could create an app to
solve a community problem by
connecting to an online
database through an application
programming interface (API).

Control

Programmers consider
tradeoffs related to
implementation, readability,
and program performance
when selecting and
combining control
structures.

| 97

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

3

3A-IC-26

Demonstrate ways a
given algorithm
applies to problems
across disciplines.

Computation can share
features with disciplines
such as art and music by
algorithmically
translating human
intention into an artifact.

3.1

Students should be
able to identify real-
world problems that
span multiple
disciplines and can
be solved
computationally.

• Students could be able to
identify real-world problems
that span multiple disciplines,
such as increasing bike safety
with new helmet technology,
and that can be solved

Culture

The design and use of
computing technologies
and artifacts can improve,
worsen, or maintain
inequitable access to
information and
opportunities.

4. Developing and Using Abstractions
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

4

3A-CS-01

Explain how
abstractions hide the
underlying
implementation
details of computing
systems embedded in
everyday objects.

Computing devices
are often integrated
with other systems,
including biological,
mechanical, and
social systems. The
creation of integrated
or embedded
systems is not an
expectation at this
level.

4.1

Students, when
working with data,
should be able to
identify important
aspects and find
patterns in related
data sets such as
crop output,
fertilization methods,
and climate
conditions.

• Students might select an
embedded device such as a car
stereo: identify the types of data
(radio station presets, volume
level) and procedures (increase
volume, store/recall saved station;
mute) it includes and explain how
the implementation details are
hidden from the user.

• Students might select a medical
device that can be embedded
inside a person to monitor and
regulate his or her health, a
hearing aid (a type of assistive
device) can filter out specific
frequencies and magnify others.

Devices

Computing devices are often
integrated with other
systems, including biological,
mechanical, and social
systems. These devices can
share data. The usability,
dependability, security, and
accessibility of these devices,
and the systems they are
integrated with, are essential
considerations in their design
as they evolve.

| 98

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

3A-CS-02

Compare levels of
abstraction and
interactions between
application software,
system software, and
hardware layers.

At its most basic
level, a computer is
composed of physical
hardware and
electrical impulses.
Multiple layers of
software are built
upon the hardware
and interact with the
layers above and
below them to
reduce complexity.
System software
manages a
computing device’s
resources so that
software can interact
with hardware.

4.1

Students, when
working with data,
should be able to
identify important
aspects and find
patterns in related
data sets such as
crop output,
fertilization methods,
and climate
conditions.

• Students could compare how text
editing software interacts with the
operating system to receive input
from the keyboard, convert the
input to bits for storage, and
interpret the bits as readable text
to display on the monitor.

• Students could compare system
software that is used on many
different types of devices, such as
smart TVs, assistive devices, virtual
components, cloud components,
and drones.

• Students may explore the
progression from voltage to
binary signal to logic gates to
adders and so on. Knowledge of
specific, advanced terms for
computer architecture, such as
BIOS, kernel, or bus, is not
expected at this level.

Hardware & Software

Levels of interaction exist
between the hardware,
software, and user of a
computing system. The most
common levels of software
that a user interacts with
include system software and
applications. System software
controls the flow of
information between
hardware components used
for input, output, storage,
and processing.

| 99

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

3A-NI-04

Evaluate the
scalability and
reliability of
networks, by
describing the
relationship between
routers, switches,
servers, topology,
and addressing.

Each device is
assigned an address
that uniquely
identifies it on the
network. Routers
function by
comparing IP
addresses to
determine the
pathways packets
should take to reach
their destination.
Switches function by
comparing MAC
addresses to
determine which
computers or
network segments
will receive frames.

4.1

Students, when
working with data,
should be able to
identify important
aspects and find
patterns in related
data sets such as
crop output,
fertilization methods,
and climate
conditions.

• Students could use online
network simulators to experiment
with these factors.

Network Communication &
Organization

Network topology is
determined, in part, by how
many devices can be
supported. Each device is
assigned an address that
uniquely identifies it on the
network. The hierarchy and
redundancy enable the
scalability and reliability of
the Internet in networks.

| 100

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

3A-DA-09

Translate between
different bit
representations of
real-world
phenomena, such as
characters, numbers,
and images.

Data is represented
by binary,
hexadecimal,
hexadecimal color
codes, decimal
percentages,
ASCII/Unicode
representation, and
logic gates

4.1

Students, when
working with data,
should be able to
identify important
aspects and find
patterns in related
data sets such as
crop output,
fertilization methods,
and climate
conditions.

• Students could convert
hexadecimal color codes to
decimal percentages,
ASCII/Unicode representation,
and logic gates

Storage

Data can be composed of
multiple data elements that
relate to one another. For
example, population data
may contain information
about age, gender, and
height. People make choices
about how data elements are
organized and where data is
stored. These choices affect
cost, speed, reliability,
accessibility, privacy, and
integrity.

| 101

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

3A-DA-11

Create interactive
data visualizations
using software tools
to help others better
understand real-
world phenomena.

People transform,
generalize, simplify,
and present large
data sets in different
ways to influence
how other people
interpret and
understand the
underlying
information.

4.4

Students could
progress to creating
more complex and
realistic interactions
between species,
such as predation,
competition, or
symbiosis, and
evaluate the model
based on data
gathered from
nature.

• Students could model
phenomena as systems, with rules
governing the interactions within
the system, and evaluate these
models against real-world
observations. For example,
flocking behaviors queueing, or
life cycles. Google Fusion Tables
can provide access to data
visualization online.

• Students could create software
tools or programming to create
powerful, interactive data
visualizations and perform a range
of mathematical operations to
transform and analyze data.
Examples include visualization,
aggregation, rearrangement, and
application of mathematical
operations.

Collection Visualization &
Transformation

Data is continuously collected
or generated through
automated processes that are
not always evident, raising
privacy concerns. The
different collection methods
and tools that are used
influence the amount and
quality of the data that is
observed and recorded.
People transform, generalize,
simplify, and present large
data sets in different ways to
influence how other people
interpret and understand the
underlying information.

| 102

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

4

3A-DA-12

Create computational
models that
represent the
relationships among
different elements of
data collected from a
phenomenon or
process.

Computational
models make
predictions about
processes or
phenomena based on
selected data and
features.

4.4

Students could
progress to creating
more complex and
realistic interactions
between species,
such as predation,
competition, or
symbiosis, and
evaluate the model
based on data
gathered from
nature.

• Students could analyze and
evaluate these models against
real-world observations. For
example, students might create a
simple producer-consumer
ecosystem model using a
programming tool.

• Students could model
phenomena as systems, with rules
governing the interactions within
the system.

• Students could progress to
creating more complex and
realistic interactions between
species, such as predation,
competition, or symbiosis, and
evaluate the model based on data
gathered from nature.

Inference & Models

The accuracy of predictions
or inferences depends upon
the limitations of the
computer model and the data
the model is built. The
amount, quality, and diversity
of data and the features
chosen can affect the quality
of a model and the ability to
understand a system.
Predictions or inferences are
tested to validate models.

Pr
ac

tic
e

4

3A-AP-14

Use lists to simplify
solutions,
generalizing
computational
problems instead of
repeatedly using
simple variables.

Data is stored in
multiple ways that
support the solution
of computational
problems.

4.1

Students, when
working with data,
should be able to
identify important
aspects and find
patterns in related
data sets such as
crop output,
fertilization methods,
and climate
conditions.

• Students should be able to
identify common features in
multiple segments of code and
substitute a single segment that
uses lists (arrays) to account for
the differences.

Variables

Information in the real world
can be represented in
computer programs.
Programs store and
manipulate data, such as
numbers, words, colors, and
images. The type of data
determines the actions and
attributes associated with it.

| 103

5. Creating Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

5

3A-AP-13

Create prototypes
that use algorithms
to solve
computational
problems by
leveraging prior
student knowledge
and personal
interests.

A prototype is a
computational
artifact that
demonstrates the
core functionality of a
product or process.
Prototypes are useful
for getting early
feedback in the
design process and
can yield insight into
the feasibility of a
product.

5.2

Students should
engage in the
independent,
systematic use of
design processes to
create artifacts that
solve problems with
social significance by
seeking input from
broad audiences.

• Students create artifacts that are
personally relevant or beneficial
to their community and beyond.

• Students could develop artifacts
in response to a task or a
computational problem that
demonstrates the performance,
reusability, and ease of
implementation of an algorithm.

Algorithms

People evaluate and select
algorithms based on
performance, reusability, and
ease of implementation.
Knowledge of common
algorithms improves how
people develop software,
secure data, and store
information.

| 104

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

3A-AP-15

Justify the selection
of specific control
structures when
tradeoffs involve
implementation,
readability, and
program
performance, and
explain the benefits
and drawbacks of
choices made.

Implementation
includes the choice of
programming
language, which
affects the time and
effort required to
create a program.
Readability refers to
how clear the
program is to other
programmers and
can be improved
through
documentation.

The discussion of
performance is
limited to a
theoretical
understanding of
execution time and
storage
requirements; a
quantitative analysis
is not expected.
Control structures at
this level may include
conditional
statements, loops,
event handlers, and
recursion.

5.2

Students should
engage in the
independent,
systematic use of
design processes to
create artifacts that
solve problems with
social significance by
seeking input from
broad audiences.

• Students might compare the
readability and program
performance of iterative and
recursive implementations of
procedures that calculate the
Fibonacci sequence.

Control

Programmers consider
tradeoffs related to
implementation, readability,
and program performance
when selecting and
combining control structures.

| 105

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

3A-AP-16

Design and iteratively
develop
computational
artifacts for practical
intent, personal
expression, or to
address a societal
issue by using events
to initiate
instructions.

In this context,
relevant
computational
artifacts include
programs, mobile
apps, or web apps.
Events can be user-
initiated, such as a
button press, or
system-initiated, such
as a timer firing.

5.2

Students should
engage in the
independent,
systematic use of
design processes to
create artifacts that
solve problems with
social significance by
seeking input from
broad audiences.

• At previous levels, students have
learned to create and call
procedures. Here, students design
procedures that are called by
events

• Students might create a mobile
app that updates a list of nearby
points of interest when the device
detects that its location has been
changed

Control

Programmers consider
tradeoffs related to
implementation, readability,
and program performance
when selecting and
combining control structures.

| 106

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

3A-AP-18

Create artifacts by
using procedures
within a program,
combinations of data
and procedures, or
independent but
interrelated
programs.

Computational
artifacts can be
created by combining
and modifying
existing artifacts or
by developing new
artifacts. Examples of
computational
artifacts include
programs,
simulations,
visualizations, digital
animations, robotic
systems, and apps.

The focus at this level
is understanding a
program as a system
with relationships
between modules.
The choice of
implementation, such
as programming
language or
paradigm, may vary.

5.2

Students should
engage in the
independent,
systematic use of
design processes to
create artifacts that
solve problems with
social significance by
seeking input from
broad audiences.

• Students could incorporate
computer vision libraries to
increase the capabilities of a robot
or leverage open-source
JavaScript libraries to expand the
functionality of a web application

Modularity

Complex programs are
designed as systems of
interacting modules, each
with a specific role,
coordinating for a common
overall purpose. These
modules can be procedures
within a program,
combinations of data and
procedures, or independent
but interrelated programs.
Modules allow for better
management of complex
tasks.

| 107

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

5

3A-AP-19

Systematically design
and develop
programs for broad
audiences by
incorporating
feedback from users.

Examples of
programs could
include games,
utilities, and mobile
applications.
Students at lower
levels collect
feedback and revise
programs. At this
level, students should
do so through a
systematic process
that includes
feedback from broad
audiences.

5.1

Students should be
capable of reflecting
on and, if necessary,
modifying the plan to
accommodate end
goals.

• Students might create a user
satisfaction survey and brainstorm
distribution methods that could
yield feedback from a diverse
audience, documenting the
process they took to incorporate
selected feedback in product
revisions.

Modularity

Complex programs are
designed as systems of
interacting modules, each
with a specific role,
coordinating for a common
overall purpose. These
modules can be procedures
within a program,
combinations of data and
procedures, or independent
but interrelated programs.
Modules allow for better
management of complex
tasks.

| 108

6. Testing and Refining Computational Artifacts
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

6

3A-CS-03

Develop guidelines
that convey
systematic
troubleshooting
strategies that others
can use to identify
and fix errors.

Troubleshooting
complex problems
involves the use of
multiple sources
when researching,
evaluating, and
implementing
potential solutions.
Troubleshooting also
relies on experience,
such as when people
recognize that a
problem is like one
that they have seen
before or adapt
solutions that have
worked in the past.

6.2

Students should
progress to using
more complex
strategies for
identifying and fixing
errors, such as
printing the value of
a counter variable
while a loop is
running to determine
how many times the
loop runs.

• Students develop complex
troubleshooting strategies include
resolving connectivity problems,
adjusting system configurations
and settings, ensuring hardware
and software compatibility, and
transferring data from one device
to another.

• Students could create a flow chart,
a job aid for a help desk
employee, or an expert system.

Troubleshooting

Troubleshooting complex
problems involves the use of
multiple sources when
researching, evaluating, and
implementing potential
solutions. Troubleshooting
also relies on experience,
such as when people
recognize that a problem is
similar to one that they have
seen before or adapt
solutions that have worked in
the past.

| 109

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

3A-NI-07

Compare various
security measures,
considering tradeoffs
between the usability
and security of a
computing system.

Security measures
may include physical
security tokens, two-
factor authentication,
and biometric
verification, but
choosing security
measures involves
tradeoffs between
the usability and
security of the
system. The needs of
users and the
sensitivity of data
determine the level
of security
implemented.

6.3

Student’s evaluation
and refinement
should become an
iterative process that
also encompasses
making artifacts more
usable and accessible
(P1.2). For example,
students can
incorporate feedback
from a variety of end-
users to help guide
the size and
placement of menus
and buttons in a user
interface.

• Students might discuss computer
security policies in place at the
local level that present a tradeoff
between usability and security,
such as a web filter that prevents
access to many educational sites
but keeps the campus network
safe.

Network Communication &
Organization

Network topology is
determined, in part, by how
many devices can be
supported. Each device is
assigned an address that
uniquely identifies it on the
network. The hierarchy and
redundancy enable the
scalability and reliability of
the Internet in networks.

| 110

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

6

3A-AP-21

Evaluate and refine
computational
artifacts to make
them more usable
and accessible.

Testing and
refinement are the
deliberate and
iterative process of
improving a
computational
artifact. This process
includes debugging
(identifying and fixing
errors) and
comparing actual
outcomes to
intended outcomes.

6.3

Students’ evaluation
and refinement
should become an
iterative process that
also encompasses
making artifacts more
usable and accessible
(P1.2). For example,
students can
incorporate feedback
from a variety of end-
users to help guide
the size and
placement of menus
and buttons in a user
interface.

• Students could respond to the
changing needs and expectations
of end-users and improve the
performance, reliability, usability,
and accessibility of artifacts.

• Students could incorporate
feedback from a variety of end-
users to help guide the size and
placement of menus and buttons
in a user interface.

Program Development

Diverse teams can develop
programs with a broad
impact through careful review
and by drawing on the
strengths of members in
different roles. Design
decisions often involve
tradeoffs, the development of
complex programs aided by
resources such as libraries
and tools to edit and manage
parts of the program.
Systematic analysis is critical
for identifying the effects of
lingering bugs.

| 111

7. Communicating About Computing
Standards Description Practice

Progression
Samples of student

performance Sub-Concept

Pr
ac

tic
e

7

3A-NI-05

Give examples to
illustrate how
sensitive data can be
affected by malware
and other attacks.

Network security
depends on a
combination of
hardware, software,
and practices that
control access to data
and systems. The
needs of users and
the sensitivity of data
determine the level
of security
implemented.

7.2

Students should
incorporate clear
comments in their
product and
document their
process using text,
graphics,
presentations, and
demonstrations.

• Students might reflect on case
studies or current events in which
governments or organizations
experienced data leaks or data
loss because of these types of
attacks.

• Students could give examples of
potential security problems, such
as denial-of-service attacks,
ransomware, viruses, worms,
spyware, and phishing, present
threats to sensitive data.

Network Communication &
Organization

Network topology is
determined, in part, by how
many devices can be
supported. Each device is
assigned an address that
uniquely identifies it on the
network. The hierarchy and
redundancy enable the
scalability and reliability of
the Internet in networks.

Pr
ac

tic
e

7

3A-NI-08

Explain tradeoffs
when selecting and
implementing
cybersecurity
recommendations.

Network security
depends on a
combination of
hardware, software,
and practices that
control access to data
and systems. The
needs of users and
the sensitivity of data
determine the level
of security
implemented. Every
security measure
involves tradeoffs

7.2

Students should
incorporate clear
comments in their
product and
document their
process using text,
graphics,
presentations, and
demonstrations.

• Students should be able to
describe, justify, and document
choices they make using
terminology appropriate for the
intended audience and purpose.

• Students could debate issues
from the perspective of diverse
audiences, including individuals,
corporations, privacy advocates,
security experts, and government.

Cybersecurity

Network security depends on
a combination of hardware,
software, and practices that
control access to data and
systems. The needs of users
and the sensitivity of data
determine the level of
security implemented.

| 112

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

3A-AP-20

Evaluate licenses that
limit or restrict use of
computational
artifacts when using
resources such as
libraries.

Examples of software
licenses include
copyright, freeware,
and many open-
source licensing
schemes. At previous
levels, students
adhered to licensing
schemes. At this level,
they should consider
licensing implications
for their work,
especially when
incorporating
libraries and other
resources.

7.3

Students should
consider common
licenses that place
limitations or
restrictions on the
use of computational
artifacts. For example,
a downloaded image
may have restrictions
that prohibit
modification of an
image or using it for
commercial purposes.

• Students might consider two
software libraries that address a
similar need, justifying their
choice based on the library that
has the least restrictive license.

Program Development

Diverse teams can develop
programs with a broad
impact through careful review
and by drawing on the
strengths of members in
different roles. Design
decisions often involve
tradeoffs, the development of
complex programs aided by
resources such as libraries
and tools to edit and manage
parts of the program.
Systematic analysis is critical
for identifying the effects of
lingering bugs.

Pr
ac

tic
e

7

3A-AP-23

Document design
decisions using text,
graphics,
presentations, and/or
demonstrations in
the development of
complex programs.

Complex programs
are designed as
systems of
interacting modules,
each with a specific
role, coordinating for
a common overall
purpose. These
modules can be
procedures within a
program,
combinations of data
and procedures.

7.2

Students should
incorporate clear
comments in their
product and
document their
process using text,
graphics,
presentations, and
demonstrations.

• Students development of complex
programs aided by resources such
as libraries and tools to edit and
manage parts of the program

Program Development

Diverse teams can develop
programs with a broad
impact through careful review
and by drawing on the
strengths of members in
different roles. Design
decisions often involve
tradeoffs. Systematic analysis
is critical for identifying the
effects of lingering bugs.

| 113

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

3A-IC-28

Explain the beneficial
and harmful effects
that intellectual
property laws can
have on innovation.

Laws govern many
aspects of
computing, such as
privacy, data,
property,
information, and
identity. These laws
can have beneficial
and harmful effects,
such as expediting or
delaying
advancements in
computing and
protecting or
infringing upon
people’s rights.
International
differences in laws
and ethics have
implications for
computing.

7.3

Students should
consider common
licenses that place
limitations or
restrictions on the
use of computational
artifacts. For example,
a downloaded image
may have restrictions
that prohibit
modification of an
image or using it for
commercial purposes.

• Students could explain the laws
that mandate the blocking of
some file-sharing websites may
reduce online piracy but can
restrict the right to access
information. Firewalls can be used
to block harmful viruses and
malware but can also be used for
media censorship.

• Students should be aware of
intellectual property laws and be
able to explain how they are used
to protect the interests of
innovators and how patent trolls
abuse the laws for financial gain.

Safety Law & Ethics

Laws govern many aspects of
computing, such as privacy,
data, property, information,
and identity. These laws can
have beneficial and harmful
effects, such as expediting or
delaying advancements in
computing and protecting or
infringing upon people’s
rights. International
differences in laws and ethics
have implications for
computing.

| 114

Standards Description Practice
Progression

Samples of student
performance Sub-Concept

Pr
ac

tic
e

7

3A-IC-29

Explain the privacy
concerns related to
the collection and
generation of data
through automated
processes that may
not be evident to
users.

Data can be collected
and aggregated
across millions of
people, even when
they are not actively
engaging with or
physically near the
data collection
devices. This
automated and non-
evident collection can
raise privacy
concerns, such as
social media sites
mining an account
even when the user is
not online.

7.2

Students should
incorporate clear
comments in their
product and
document their
process using text,
graphics,
presentations, and
demonstrations.

• Students could explain
surveillance video used in a store
to track customers for security or
information about purchase
habits or the monitoring of road
traffic to change signals in real-
time to improve road efficiency
without drivers being aware.
Methods and devices for
collecting data can differ by the
amount of storage required, level
of detail collected, and sampling
rates

Safety Law & Ethics

Laws govern many aspects of
computing, such as privacy,
data, property, information,
and identity. These laws can
have beneficial and harmful
effects, such as expediting or
delaying advancements in
computing and protecting or
infringing upon people’s
rights. International
differences in laws and ethics
have implications for
computing.

Pr
ac

tic
e

7

3A-IC-30

Evaluate the social
and economic
implications of
privacy in the context
of safety, law, or
ethics.

Laws govern many
aspects of
computing, such as
privacy, data,
property,
information, and
identity. International
differences in laws
and ethics have
implications for
computing.

7.3

Students should
consider common
licenses that place
limitations or
restrictions on the
use of computational
artifacts. For example,
a downloaded image
may have restrictions
that prohibit
modification.

• Students might review case
studies or current events which
present an ethical dilemma when
an individual’s right to privacy is
at odds with the safety, security,
or wellbeing of a community

Safety Law & Ethics

Laws govern many aspects of
computing, such as privacy,
data, property, information,
and identity. These laws can
have beneficial and harmful
effects, such as expediting or
delaying advancements in
computing and protecting or
infringing upon people’s
rights.

| 115

Attribution

The Computer Science Teaching Association (CSTA) K-12 Computer Science Standards are licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

The K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org, Computer Science Teachers
Association, Cyber Innovation Center, and National

Math and Science Initiative in partnership with states and districts, is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

License

Except where otherwise noted, original content in the Washington State Computer Science Standards and Practices by Grade Band Guide by
the Washington Office of Superintendent of Public Instruction is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

https://csteachers.org/page/standards/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://k12cs.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

| 116

APPENDICES
Appendix A. Computer Science State Advisory Committee
In November 2019, OSPI assembled an Advisory Committee representing a broad group of CS
experts to discuss aspects of the implementation of the previously described legislative bills. They
assembled in three sessions that generated rich qualitative information that was analyzed using the
methodology outlined in Appendix E. The Advisory Committee members and their affiliations are
listed below.

Name Affiliation

Doug Dowell STEM Coordinator & Grant Supervisor
Central Kitsap School District

Linda Drake Director of Career- and College-Ready Initiatives
WA State Board of Education

Dr. Ellen Ebert Science, Environmental and Sustainability Director
Learning & Teaching, OSPI

Doug Ferguson Senior Learning Designer, Interaction Design Team
AVID Center

Karen Hickenbottom Digital Learning Specialist
Monroe School District

Dr. Sue Kane Director of STEM Initiatives and Strategic Partnerships
North Central Educational Service District

Greg Kilpatrick Assistant Director of Career & Technical Education
South Kitsap School District

Dr. Amy Ko Associate Professor, Informatics Program Chair
University of Washington

Juan Lozano Instructional Specialist – CTE
Highline Public Schools

Brock Maxfield Principal
Hoquiam High School

Dr. Ann McMahon Executive Director of Research Strategy for Broad Impact
Office of Research, University of Washington

Emily Rang Director of Data Governance Center for the Improvement of Student
Learning, OSPI

Dennis Small Educational Technology Director
Information Technology Services, OSPI

Dean Smith Middle School Teacher
Prosser School District

Lance Wrzesinski Business and Marketing Program Supervisor
Career & Technical Education (CTE, OSPI)

| 117

Appendix B. Frequently Asked Questions—
Superintendent.

Role: Superintendent / School Board

Focus: Budget and Compliance

1. What is the practical way to get started with CS requirements?

Review the CS instruction already in place. Consider whether the high school in your district offers
CS credit and whether the credit-bearing course(s) is/are open to all students. Review CS
instruction at the K–8 level. Are elementary and middle schools teaching the CS skills needed for all
students to access meaningful participation in a high school credit-bearing course?

2. What are other schools offering?

Each ESD has a staff person represented on the ESD CS Leadership Team. This ESD representative
will be familiar with courses and instruction in many schools in your region and throughout the
state.

3. Do course offerings vary according to the size of the school district?

Two important factors in determining the scope of CS instruction, especially at the high school
level, are the availability of teachers with appropriate certification and the flexibility of the master
schedule. In smaller school districts, both of these factors may limit options for CS instruction.
Distance learning opportunities can help to overcome these limitations.

4. What’s the minimum our school must do to meet state compliance?

Senate Bill 5088 requires all school districts that operate a high school to offer at least one elective
course in CS that is available for all students by the 2022–23 school year. The law also allows a
process approved by OSPI, which will permit students to demonstrate CS competency in lieu of
completion of such a course beginning in the 2019–20 school year. Board policy must identify the
credit in math or science to be awarded for all AP Computer Science courses.

Substitute House Bill 1577 further requires that all schools report the number of CS courses offered,
whether the course is an advanced placement course and the number of students enrolled in CS
courses. Demographic information about enrolled students is also required. Student enrollment
data is reported through the school’s student record system. Schools must also report the teachers
that instruct CS courses and their demographic information. Teacher participation is compiled
through teacher certification records and reports. This CS course, student and teacher information
is required beginning in June of 2020.

| 118

For more specific detail regarding state law, please visit the Computer Science Laws and Regulations
page of the OSPI website. URL:

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-
science-laws-and-regulations

5. What funding is available?

Courses offered for CS credit are funded as any other basic education course, except that some
(but not all) CS courses may qualify for CTE funding, in which case the course is funded by the
formula of other CTE courses in the school. At this time, CS courses are not required to qualify for
CTE funding, nor do they automatically do so.

6. What are the costs associated with CS courses?

Computer Science courses require hardware, software, curriculum, and teachers. These costs are
typically covered by more than one single budget. Hardware is often included in the school
district’s overall technology plan. Software and curriculum may be locally developed or purchased
from one or more third-party vendors. Instruction may be provided by a local teacher or through
video or online courses. OSPI and regional ESD computer science personnel are familiar with
options and services to be considered in the budgeting process.

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations
https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations

| 119

Appendix C. Frequently Asked Questions—High School
Principal.

Role: High School Principal/Academic Counselor

Focus: Courses, credits, credentials, schedules

1. What is a Computer Science course?

At the high school level, a CS course will typically be an elective course offered as a full year
spanning one or more semesters/trimesters. The course will offer Computer Science credit,
although dual credit options may also be available (i.e., computer science/math, business,
communications, etc.)

2. What requirements must our school put in place to meet state compliance?

Senate Bill 5088 requires all school districts must provide all students with the opportunity to take
at least one elective course in CS by the 2022–23 school year. Board policy must identify the credit
in math or science to be awarded for all AP Computer Science courses.

Substitute House Bill 1577 further requires that all schools report the number of CS courses offered,
whether the course is an advanced placement course and the number of students enrolled in CS
courses. Student-related information required to be reported students’ gender, grade level,
demographics, eligibility for specific education programs, and a record of all courses attempted by
the student. Schools must also report the teachers that instruct CS courses and their demographic
information. Teacher participation is compiled through teacher certification records and reports.
This CS course, student and teacher information is required beginning in June of 2020.

For more specific detail regarding state law, please visit the Computer Science Laws and Regulations
page of the OSPI website. URL:

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-
science-laws-and-regulations

3. What training and certification must teachers have to teach a CS course?

Refer to the Professional Educators Standards Board and OSPI certification websites for current
requirements for CS teacher certification.

Continually emerging scholarship in the area of CS makes ongoing professional development for
CS teachers essential. The district’s Title II and Title IV funding may be possible sources for this
training. Local professional development plans should include CS training for all teachers as the
integration of CS with every academic discipline is an increasing priority.

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations
https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations

| 120

4. Do CS courses qualify as CTE courses?

Some, but not all, CS courses may meet CTE requirements. At this time, CS courses are not required
to meet CTE standards, nor do they automatically do so. Districts must comply with CTE rules,
including submission and approval of course Frameworks and meeting teacher certification
requirements.

5. What credit do students enrolled in CS courses receive?

High school level CS courses provide computer science credit as elective credit. Integrated courses
that focus on both CS and math or science may offer credit in both CS and that subject. However,
students must determine the subject area for which they apply the credit for the class (i.e., they
cannot receive double credit for one class).

6. What are the CS curriculum options available?

Schools may offer a locally developed curriculum aligned to the state CS standards. The College
Board has approved CS endorsed providers that offer multiple CS course curriculums and
professional development. Video supported instruction can also be contracted through 3rd party
vendors (e.g., TEALS). Online instruction may also be an option for some schools.

7. What factors should be considered to ensure that all high school students have access to
a CS course?

The following students may lack meaningful access to a CS course unless their unique needs are
considered:

• High Achieving students for whom other college preparatory classes may crowd out options
for a CS class.

• Students that have not had an earlier interest in CS – ensure that an entry-level course does
not require pre-requisites.

• Students with disabilities – plan for accommodations to increase student access and
success.

• Students with “non-traditional” academic history (e.g., highly capable but underachieving
students) – ensure that a low GPA does not automatically preclude enrollment.

• Students with scheduling difficulties or with significant CS experience outside the
classroom.

| 121

Appendix D. Frequently Asked Questions—K–8 Principal

Role: K–8 Principal / Academic Counselor

Focus: Courses, credits, credentials, schedules

1. What is a Computer Science course?

At the K–8 level, CS will sometimes be offered as a unit or project. In this case, the district is not
likely to report such instruction as a course. However, when substantial CS standards are embedded
in integrated instruction that is sustained for a quarter/semester/trimester at the K–8 level, districts
may choose to report this instruction as a CS course.

2. What requirements must our school put in place to meet state compliance?

Because one or more CS courses are required at the high school level, and this course(s) must be
accessible for all students, students must develop the foundational skills needed beginning in
elementary school in order to succeed in high school CS instruction. This is best accomplished by a
systematic program of instruction throughout the K–8 learning experience.

To ensure that state reports reflect the CS instruction at the K–8 level, schools may consider
defining course descriptions for CS instruction and encoding this instruction through their student
record system. For more specific detail regarding state law, please visit the Computer Science Laws
and Regulations page of the OSPI website. URL:

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-
science-laws-and-regulations

3. How can K–8 schools fit computer science courses into tight schedules?

Schools must plan for multiple curriculum requirements and often find it challenging to teach
curriculum standards in isolation. The state CS standards are appropriate for the inclusion of other
content areas such as math and science. The integration of CS into related disciplines will optimize
classroom scheduling and support CS instruction for all students. Instruction in the use of computer
technology can be expanded to include CS foundations as well. Science classes could embed CS
with a focus on the design of data collection and data analysis using digital technology; literature
and communication classes could embed CS standards with an emphasis on digital communication,
the impacts of social media, and the responsible use of materials created by others.

https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations
https://www.k12.wa.us/student-success/resources-subject-area/computer-science/computer-science-laws-and-regulations

| 122

4. What training and certification must teachers have to teach a CS course?

Refer to the Professional Educators Standards Board and OSPI certification websites for current
requirements for CS teacher certification.

Continually emerging scholarship in the area of CS makes ongoing professional development for
CS teachers essential. The district’s Title II and Title IV funding may be possible sources for this
training. Local professional development plans should include CS training for all teachers as the
integration of CS with every academic discipline is an increasing priority.

5. Where can our school find support in designing the K–8 CS curriculum?

Each ESD has a staff person that can help districts with CS. This ESD representative will be familiar
with courses and instruction in many schools in your region and throughout the state.

6. What factors should be considered to ensure that all our students are prepared for
success in CS courses in high school and beyond?

The following students may lack meaningful access to a CS course unless their unique needs are
considered:

• Any student who does not express an interest in Computer Science – make instruction
student-centered to allow students to connect a personal interest with CS instruction.

• Students with disabilities – plan for accommodations to increase student success.

• Students with “non-traditional” academic history (e.g., highly capable but underachieving
students) – these students often need encouragement and flexibility to make a “hands on”
connection to CS.

| 123

Appendix E. Methodology used in the development of
this document.
A mixed-methods approach informed the development of this guidance document and supporting
resources. First, an environmental scan and literature review was conducted to ground the work in
research and in the learned experiences of states across the Nation. The summarized information
from this task was presented in a brief and on slides to provide rich contextual background for the
Advisory Committee members.

A total of three Advisory Committee meetings occurred (one in-person and two virtual) from
November 2019 to April 2020. The first half-day Advisory Committee in-person meeting generated
rich quantitative and qualitative data using targeted protocols with the whole group and small
group divided by grade level band. In addition to discussions between the Advisory Committee
members, several state leaders connected virtually with the group to shared essential learnings
from the implementation of their state computer science plan. Discussions were recorded,
transcribed, and uploaded into Dedoose, a software package designed for qualitative narrative
analysis. Emerging themes from the analysis influenced the design of the draft guidance document.
Advisory Committee members received the draft guidance document to review and provide
feedback and comments.

The second Advisory Committee meeting occurred virtually in January 2020. Over two hours, each
Advisory member shared their feedback and comments on the first draft document. The meeting
was recorded, transcribed, and uploaded into Dedoose for qualitative narrative analysis resulting in
a second draft of the guidance document.

The development team had planned to pilot the draft document on-site with three to five schools;
however, the COVID-19 pandemic occurred, and the schools closed. Schools accepted an invitation
for a virtual pilot, and a two-hour focus group ensued. The focus group protocol systematically
walked participants through the draft guidance document allowing sufficient time for each person
to respond to open-ended non-biased questions. Focus group participants included a building
administrator, a records assistant, and a classroom teacher. They provided valuable information
that was incorporated into the draft to increase utility to school staff and educators carrying out
the work. Pilot participants represented the K–8 perspective, thus adding clarity about the
requirements relative to non-high schools.

The last Advisory Committee member engagement occurred as a review and response opportunity
in March 2020. Members reviewed the third draft and again provided comments that were
reviewed with OSPI and other stakeholders. The final draft circulated among state leaders for
review. Slight revisions were made, and the first version published in May 2020 with the
acknowledgment that this is a living document that will be revised as legislation is implemented.

| 124

LEGAL NOTICE

Alternate material licenses with different levels of user permission are clearly indicated next to the
specific content in the materials.

This resource may contain links to websites operated by third parties. These links are provided for
your convenience only and do not constitute or imply any endorsement or monitoring by OSPI.

If this work is adapted, note the substantive changes and re-title, removing any Washington Office of
Superintendent of Public Instruction logos. Provide the following attribution:

“This resource was adapted from original materials provided by the Office of Superintendent of Public
Instruction. Original materials may be accessed at Computer Science Guidance page
(https://www.k12.wa.us/student-success/resources-subject-area/computer-science/guidance).

OSPI provides equal access to all programs and services without discrimination based on sex, race,
creed, religion, color, national origin, age, honorably discharged veteran or military status, sexual
orientation including gender expression or identity, the presence of any sensory, mental, or physical
disability, or the use of a trained dog guide or service animal by a person with a disability. Questions
and complaints of alleged discrimination should be directed to the Equity and Civil Rights Director at
360-725-6162 or PO. Box 47200 Olympia, WA 98504-7200.

Download this material in PDF at the Computer Science Guidance page
(https://www.k12.wa.us/student-success/resources-subject-area/computer-science/guidance). This
material is available in alternative format upon request. Contact the Resource Center at 888-595-
3276, TTY 360-664-3631. Please refer to this document number for quicker service: xx-xxxx.

Except where otherwise noted, this work by the Office of Superintendent of Public
Instruction is licensed under a Creative Commons Attribution License.

http://www.k12.wa.us/
http://www.k12.wa.us/
http://creativecommons.org/licenses/by/4.0/

| 125

Chris Reykdal | State Superintendent
Office of Superintendent of Public Instruction
Old Capitol Building | P.O. Box 47200
Olympia, WA 98504-7200

All students prepared for post-secondary pathways,
careers, and civic engagement.

	Executive Summary
	Introduction to the Guidance Document
	Background
	Washington State Definition of Computer Science
	Similarities and Overlaps between Computer Science and Educational Technology

	Foundational Knowledge for Computer Science
	Washington State Learning Standards for Computer Science
	Equity in Computer Science Education

	Varied Instructional Settings to Teach Computer Science
	Computer Science Integration into Various Content Areas
	Next Steps
	Support to Implement Computer Science in Your School

	School Reporting of Computer Science Courses
	Assessment of Computer Science Courses
	Computer Science state Course Code Guidance
	Computer Science STATE Course Codes
	CTE CIP Codes and STATE Course Codes
	Terms and Definitions
	Course Descriptions

	Standards and Practices by Grade Band Guide
	Introduction

	K–2 Standards & Practices
	1. Fostering an Inclusive Computing Culture
	2. Collaborating around Computing
	3. Recognizing & Defining Computational Problems
	4. Developing & Using Abstractions
	5. Creating Computational Artifacts
	6. Testing and Refining Computational Artifacts
	7. Communicating About Computing

	Grades 3–5 CS Standards & Practices
	1. Fostering an Inclusive Computing Culture
	2. Collaborating Around Computing
	3. Recognizing & Defining Computational Problems
	4. Developing & Using Abstractions
	5. Creating Computational Artifacts
	6. Testing and Refining Computational Artifacts
	7. Communicating About Computing

	Grades 6–8 Standards & Practices
	1. Fostering an Inclusive Computing Culture
	2. Collaborating Around Computing
	3. Recognizing & Defining Computational Problems
	4. Developing and Using Abstractions
	5. Creating Computational Artifacts
	6. Testing and Refining Computational Artifacts
	7. Communicating About Computing

	Grades 9–10 Standards & Practices
	1. Fostering an Inclusive Computing Culture
	2. Collaborating Around Computing
	3. Recognizing & Defining Computational Problems
	4. Developing and Using Abstractions
	5. Creating Computational Artifacts
	6. Testing and Refining Computational Artifacts
	7. Communicating About Computing

	Appendices
	Appendix A. Computer Science State Advisory Committee
	Appendix B. Frequently Asked Questions—Superintendent.
	Appendix C. Frequently Asked Questions—High School Principal.
	Appendix D. Frequently Asked Questions—K–8 Principal
	Appendix E. Methodology used in the development of this document.

	Legal Notice

